• Serial No.: Serial number (1~530)
  • ITA No.: Number listed on the International Tables for Crystallography, Vol A. (1~230)
  • SG symbol: Space group symbol (HM full notation)
  • M: Multiplicity
  • W: Wyckoff Letter
  • SS: Site Symmetry
  • Position: Equivalent position
Serial No.ITA No.SG symbolMWSSPosition
34975\(P\ 4\)\((0,0,0)+\)
4\(d\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
2\(c\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)
1\(b\)\(4..\)\(\frac{1}{2},\frac{1}{2},z\)
1\(a\)\(4..\)\(0,0,z\)
35076\(P\ 4_1\)\((0,0,0)+\)
4\(a\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z+\frac{1}{2}\)\(\bar{y},x,z+\frac{1}{4}\)\(y,\bar{x},z+\frac{3}{4}\)
35177\(P\ 4_2\)\((0,0,0)+\)
4\(d\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z+\frac{1}{2}\)\(y,\bar{x},z+\frac{1}{2}\)
2\(c\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z+\frac{1}{2}\)
2\(b\)\(2..\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
2\(a\)\(2..\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)
35278\(P\ 4_3\)\((0,0,0)+\)
4\(a\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z+\frac{1}{2}\)\(\bar{y},x,z+\frac{3}{4}\)\(y,\bar{x},z+\frac{1}{4}\)
35379\(I\ 4\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
8\(c\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
4\(b\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)
2\(a\)\(4..\)\(0,0,z\)
35480\(I\ 4_1\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
8\(b\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},\bar{x},z+\frac{3}{4}\)
4\(a\)\(2..\)\(0,0,z\)\(0,\frac{1}{2},z+\frac{1}{4}\)
35581\(P\ \bar{4}\)\((0,0,0)+\)
4\(h\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
2\(g\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)
2\(f\)\(2..\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)
2\(e\)\(2..\)\(0,0,z\)\(0,0,\bar{z}\)
1\(d\)\(\bar{4}..\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(c\)\(\bar{4}..\)\(\frac{1}{2},\frac{1}{2},0\)
1\(b\)\(\bar{4}..\)\(0,0,\frac{1}{2}\)
1\(a\)\(\bar{4}..\)\(0,0,0\)
35682\(I\ \bar{4}\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
8\(g\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
4\(f\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)
4\(e\)\(2..\)\(0,0,z\)\(0,0,\bar{z}\)
2\(d\)\(\bar{4}..\)\(0,\frac{1}{2},\frac{3}{4}\)
2\(c\)\(\bar{4}..\)\(0,\frac{1}{2},\frac{1}{4}\)
2\(b\)\(\bar{4}..\)\(0,0,\frac{1}{2}\)
2\(a\)\(\bar{4}..\)\(0,0,0\)
35783\(P\ 4/m\)\((0,0,0)+\)
8\(l\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
4\(k\)\(m..\)\(x,y,\frac{1}{2}\)\(\bar{x},\bar{y},\frac{1}{2}\)\(\bar{y},x,\frac{1}{2}\)\(y,\bar{x},\frac{1}{2}\)
4\(j\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,0\)\(y,\bar{x},0\)
4\(i\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}\)
2\(h\)\(4..\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)
2\(g\)\(4..\)\(0,0,z\)\(0,0,\bar{z}\)
2\(f\)\(2/m..\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)
2\(e\)\(2/m..\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
1\(d\)\(4/m..\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(c\)\(4/m..\)\(\frac{1}{2},\frac{1}{2},0\)
1\(b\)\(4/m..\)\(0,0,\frac{1}{2}\)
1\(a\)\(4/m..\)\(0,0,0\)
35884\(P\ 4_2/m\)\((0,0,0)+\)
8\(k\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z+\frac{1}{2}\)\(y,\bar{x},z+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}+\frac{1}{2}\)\(\bar{y},x,\bar{z}+\frac{1}{2}\)
4\(j\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,\frac{1}{2}\)\(y,\bar{x},\frac{1}{2}\)
4\(i\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)
4\(h\)\(2..\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)
4\(g\)\(2..\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)\(0,0,\bar{z}\)\(0,0,\bar{z}+\frac{1}{2}\)
2\(f\)\(\bar{4}..\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)
2\(e\)\(\bar{4}..\)\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
2\(d\)\(2/m..\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,0\)
2\(c\)\(2/m..\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)
2\(b\)\(2/m..\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(a\)\(2/m..\)\(0,0,0\)\(0,0,\frac{1}{2}\)
35985\(P\ 4/n\)\((0,0,0)+\)
8\(g\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
4\(f\)\(2..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(0,0,\bar{z}\)
4\(e\)\(\bar{1}\)\(\frac{1}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)
4\(d\)\(\bar{1}\)\(\frac{1}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{3}{4},0\)\(\frac{1}{4},\frac{3}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)
2\(c\)\(4..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)
2\(b\)\(\bar{4}..\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(a\)\(\bar{4}..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)
36085\(P\ 4/n\)\((0,0,0)+\)
8\(g\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},x,z\)\(y,\bar{x}+\frac{1}{2},z\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x},\bar{z}\)\(\bar{y},x+\frac{1}{2},\bar{z}\)
4\(f\)\(2..\)\(\frac{1}{4},\frac{3}{4},z\)\(\frac{3}{4},\frac{1}{4},z\)\(\frac{3}{4},\frac{1}{4},\bar{z}\)\(\frac{1}{4},\frac{3}{4},\bar{z}\)
4\(e\)\(\bar{1}\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
4\(d\)\(\bar{1}\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)
2\(c\)\(4..\)\(\frac{1}{4},\frac{1}{4},z\)\(\frac{3}{4},\frac{3}{4},\bar{z}\)
2\(b\)\(\bar{4}..\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)
2\(a\)\(\bar{4}..\)\(\frac{1}{4},\frac{3}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)
36186\(P\ 4_2/n\)\((0,0,0)+\)
8\(g\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
4\(f\)\(2..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}\)
4\(e\)\(2..\)\(0,\frac{1}{2},z\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}\)
4\(d\)\(\bar{1}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)
4\(c\)\(\bar{1}\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)
2\(b\)\(\bar{4}..\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(\bar{4}..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
36286\(P\ 4_2/n\)\((0,0,0)+\)
8\(g\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{y},x+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x},z+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y,\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x,\bar{z}+\frac{1}{2}\)
4\(f\)\(2..\)\(\frac{1}{4},\frac{1}{4},z\)\(\frac{3}{4},\frac{3}{4},z+\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\bar{z}\)\(\frac{1}{4},\frac{1}{4},\bar{z}+\frac{1}{2}\)
4\(e\)\(2..\)\(\frac{3}{4},\frac{1}{4},z\)\(\frac{3}{4},\frac{1}{4},z+\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\bar{z}\)\(\frac{1}{4},\frac{3}{4},\bar{z}+\frac{1}{2}\)
4\(d\)\(\bar{1}\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
4\(c\)\(\bar{1}\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)
2\(b\)\(\bar{4}..\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)
2\(a\)\(\bar{4}..\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
36387\(I\ 4/m\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
8\(h\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,0\)\(y,\bar{x},0\)
8\(g\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}\)
8\(f\)\(\bar{1}\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)
4\(e\)\(4..\)\(0,0,z\)\(0,0,\bar{z}\)
4\(d\)\(\bar{4}..\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)
4\(c\)\(2/m..\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
2\(b\)\(4/m..\)\(0,0,\frac{1}{2}\)
2\(a\)\(4/m..\)\(0,0,0\)
36488\(I\ 4_1/a\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(f\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},\bar{x},z+\frac{3}{4}\)
\(\bar{x},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{4}\)\(x+\frac{1}{2},y,\bar{z}+\frac{3}{4}\)\(y,\bar{x},\bar{z}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
8\(e\)\(2..\)\(0,0,z\)\(0,\frac{1}{2},z+\frac{1}{4}\)\(0,\frac{1}{2},\bar{z}+\frac{1}{4}\)\(0,0,\bar{z}\)
8\(d\)\(\bar{1}\)\(0,\frac{1}{4},\frac{5}{8}\)\(\frac{1}{2},\frac{1}{4},\frac{1}{8}\)\(\frac{3}{4},\frac{1}{2},\frac{7}{8}\)\(\frac{3}{4},0,\frac{3}{8}\)
8\(c\)\(\bar{1}\)\(0,\frac{1}{4},\frac{1}{8}\)\(\frac{1}{2},\frac{1}{4},\frac{5}{8}\)\(\frac{3}{4},\frac{1}{2},\frac{3}{8}\)\(\frac{3}{4},0,\frac{7}{8}\)
4\(b\)\(\bar{4}..\)\(0,0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{3}{4}\)
4\(a\)\(\bar{4}..\)\(0,0,0\)\(0,\frac{1}{2},\frac{1}{4}\)
36588\(I\ 4_1/a\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(f\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{y}+\frac{3}{4},x+\frac{1}{4},z+\frac{1}{4}\)\(y+\frac{3}{4},\bar{x}+\frac{3}{4},z+\frac{3}{4}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(y+\frac{1}{4},\bar{x}+\frac{3}{4},\bar{z}+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},x+\frac{1}{4},\bar{z}+\frac{1}{4}\)
8\(e\)\(2..\)\(0,\frac{1}{4},z\)\(\frac{1}{2},\frac{1}{4},z+\frac{1}{4}\)\(0,\frac{3}{4},\bar{z}\)\(\frac{1}{2},\frac{3}{4},\bar{z}+\frac{3}{4}\)
8\(d\)\(\bar{1}\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},0,0\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)
8\(c\)\(\bar{1}\)\(0,0,0\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
4\(b\)\(\bar{4}..\)\(0,\frac{1}{4},\frac{5}{8}\)\(\frac{1}{2},\frac{1}{4},\frac{7}{8}\)
4\(a\)\(\bar{4}..\)\(0,\frac{1}{4},\frac{1}{8}\)\(\frac{1}{2},\frac{1}{4},\frac{3}{8}\)
36689\(P\ 4\ 2\ 2\)\((0,0,0)+\)
8\(p\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
4\(o\)\(.2.\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
4\(n\)\(.2.\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
4\(m\)\(.2.\)\(x,\frac{1}{2},\frac{1}{2}\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x,\frac{1}{2}\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
4\(l\)\(.2.\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
4\(k\)\(..2\)\(x,x,\frac{1}{2}\)\(\bar{x},\bar{x},\frac{1}{2}\)\(\bar{x},x,\frac{1}{2}\)\(x,\bar{x},\frac{1}{2}\)
4\(j\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x},x,0\)\(x,\bar{x},0\)
4\(i\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}\)
2\(h\)\(4..\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)
2\(g\)\(4..\)\(0,0,z\)\(0,0,\bar{z}\)
2\(f\)\(222\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
2\(e\)\(222\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)
1\(d\)\(422\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(c\)\(422\)\(\frac{1}{2},\frac{1}{2},0\)
1\(b\)\(422\)\(0,0,\frac{1}{2}\)
1\(a\)\(422\)\(0,0,0\)
36790\(P\ 4\ 2_1\ 2\)\((0,0,0)+\)
8\(g\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
4\(f\)\(..2\)\(x,x,\frac{1}{2}\)\(\bar{x},\bar{x},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
4\(e\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},0\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},0\)
4\(d\)\(2..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(0,0,\bar{z}\)
2\(c\)\(4..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)
2\(b\)\(2.22\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(a\)\(2.22\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)
36891\(P\ 4_1\ 2\ 2\)\((0,0,0)+\)
8\(d\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z+\frac{1}{2}\)\(\bar{y},x,z+\frac{1}{4}\)\(y,\bar{x},z+\frac{3}{4}\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}+\frac{3}{4}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{4}\)
4\(c\)\(..2\)\(x,x,\frac{3}{8}\)\(\bar{x},\bar{x},\frac{7}{8}\)\(\bar{x},x,\frac{5}{8}\)\(x,\bar{x},\frac{1}{8}\)
4\(b\)\(.2.\)\(\frac{1}{2},y,0\)\(\frac{1}{2},\bar{y},\frac{1}{2}\)\(\bar{y},\frac{1}{2},\frac{1}{4}\)\(y,\frac{1}{2},\frac{3}{4}\)
4\(a\)\(.2.\)\(0,y,0\)\(0,\bar{y},\frac{1}{2}\)\(\bar{y},0,\frac{1}{4}\)\(y,0,\frac{3}{4}\)
36992\(P\ 4_1\ 2_1\ 2\)\((0,0,0)+\)
8\(b\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{3}{4}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{4}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{3}{4}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
4\(a\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{3}{4}\)
37093\(P\ 4_2\ 2\ 2\)\((0,0,0)+\)
8\(p\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z+\frac{1}{2}\)\(y,\bar{x},z+\frac{1}{2}\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
4\(o\)\(..2\)\(x,x,\frac{3}{4}\)\(\bar{x},\bar{x},\frac{3}{4}\)\(\bar{x},x,\frac{1}{4}\)\(x,\bar{x},\frac{1}{4}\)
4\(n\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x},\bar{x},\frac{1}{4}\)\(\bar{x},x,\frac{3}{4}\)\(x,\bar{x},\frac{3}{4}\)
4\(m\)\(.2.\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(\frac{1}{2},x,\frac{1}{2}\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
4\(l\)\(.2.\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,x,0\)\(0,\bar{x},0\)
4\(k\)\(.2.\)\(x,\frac{1}{2},\frac{1}{2}\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
4\(j\)\(.2.\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
4\(i\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)
4\(h\)\(2..\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)
4\(g\)\(2..\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)\(0,0,\bar{z}\)\(0,0,\bar{z}+\frac{1}{2}\)
2\(f\)\(2.22\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)
2\(e\)\(2.22\)\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
2\(d\)\(222\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,0\)
2\(c\)\(222\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)
2\(b\)\(222\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(a\)\(222\)\(0,0,0\)\(0,0,\frac{1}{2}\)
37194\(P\ 4_2\ 2_1\ 2\)\((0,0,0)+\)
8\(g\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
4\(f\)\(..2\)\(x,x,\frac{1}{2}\)\(\bar{x},\bar{x},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},0\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},0\)
4\(e\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
4\(d\)\(2..\)\(0,\frac{1}{2},z\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}\)
4\(c\)\(2..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}\)
2\(b\)\(2.22\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(2.22\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
37295\(P\ 4_3\ 2\ 2\)\((0,0,0)+\)
8\(d\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z+\frac{1}{2}\)\(\bar{y},x,z+\frac{3}{4}\)\(y,\bar{x},z+\frac{1}{4}\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}+\frac{1}{4}\)\(\bar{y},\bar{x},\bar{z}+\frac{3}{4}\)
4\(c\)\(..2\)\(x,x,\frac{5}{8}\)\(\bar{x},\bar{x},\frac{1}{8}\)\(\bar{x},x,\frac{3}{8}\)\(x,\bar{x},\frac{7}{8}\)
4\(b\)\(.2.\)\(\frac{1}{2},y,0\)\(\frac{1}{2},\bar{y},\frac{1}{2}\)\(\bar{y},\frac{1}{2},\frac{3}{4}\)\(y,\frac{1}{2},\frac{1}{4}\)
4\(a\)\(.2.\)\(0,y,0\)\(0,\bar{y},\frac{1}{2}\)\(\bar{y},0,\frac{3}{4}\)\(y,0,\frac{1}{4}\)
37396\(P\ 4_3\ 2_1\ 2\)\((0,0,0)+\)
8\(b\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{3}{4}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{4}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{3}{4}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{4}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
4\(a\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{3}{4}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{4}\)
37497\(I\ 4\ 2\ 2\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(k\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
8\(j\)\(..2\)\(x,x+\frac{1}{2},\frac{1}{4}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{1}{4}\)\(x+\frac{1}{2},\bar{x},\frac{1}{4}\)
8\(i\)\(.2.\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
8\(h\)\(.2.\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
8\(g\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x},x,0\)\(x,\bar{x},0\)
8\(f\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}\)
4\(e\)\(4..\)\(0,0,z\)\(0,0,\bar{z}\)
4\(d\)\(2.22\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)
4\(c\)\(222\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
2\(b\)\(422\)\(0,0,\frac{1}{2}\)
2\(a\)\(422\)\(0,0,0\)
37598\(I\ 4_1\ 2\ 2\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(g\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},\bar{x},z+\frac{3}{4}\)
\(\bar{x}+\frac{1}{2},y,\bar{z}+\frac{3}{4}\)\(x,\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{4}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}\)
8\(f\)\(.2.\)\(x,\frac{1}{4},\frac{1}{8}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{5}{8}\)\(\frac{3}{4},x+\frac{1}{2},\frac{3}{8}\)\(\frac{3}{4},\bar{x},\frac{7}{8}\)
8\(e\)\(..2\)\(x,\bar{x},0\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x,x+\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\bar{x},\frac{3}{4}\)
8\(d\)\(..2\)\(x,x,0\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},\bar{x},\frac{3}{4}\)
8\(c\)\(2..\)\(0,0,z\)\(0,\frac{1}{2},z+\frac{1}{4}\)\(\frac{1}{2},0,\bar{z}+\frac{3}{4}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)
4\(b\)\(2.22\)\(0,0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{3}{4}\)
4\(a\)\(2.22\)\(0,0,0\)\(0,\frac{1}{2},\frac{1}{4}\)
37699\(P\ 4\ m\ m\)\((0,0,0)+\)
8\(g\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(x,\bar{y},z\)\(\bar{x},y,z\)\(\bar{y},\bar{x},z\)\(y,x,z\)
4\(f\)\(.m.\)\(x,\frac{1}{2},z\)\(\bar{x},\frac{1}{2},z\)\(\frac{1}{2},x,z\)\(\frac{1}{2},\bar{x},z\)
4\(e\)\(.m.\)\(x,0,z\)\(\bar{x},0,z\)\(0,x,z\)\(0,\bar{x},z\)
4\(d\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,z\)\(x,\bar{x},z\)
2\(c\)\(2mm.\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},z\)
1\(b\)\(4mm\)\(\frac{1}{2},\frac{1}{2},z\)
1\(a\)\(4mm\)\(0,0,z\)
377100\(P\ 4\ b\ m\)\((0,0,0)+\)
8\(d\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(y+\frac{1}{2},x+\frac{1}{2},z\)
4\(c\)\(..m\)\(x,x+\frac{1}{2},z\)\(\bar{x},\bar{x}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},x,z\)\(x+\frac{1}{2},\bar{x},z\)
2\(b\)\(2.mm\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},z\)
2\(a\)\(4..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z\)
378101\(P\ 4_2\ c\ m\)\((0,0,0)+\)
8\(e\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z+\frac{1}{2}\)\(y,\bar{x},z+\frac{1}{2}\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z+\frac{1}{2}\)\(\bar{y},\bar{x},z\)\(y,x,z\)
4\(d\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,z+\frac{1}{2}\)\(x,\bar{x},z+\frac{1}{2}\)
4\(c\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,z\)
2\(b\)\(2.mm\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
2\(a\)\(2.mm\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)
379102\(P\ 4_2\ n\ m\)\((0,0,0)+\)
8\(d\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},\bar{x},z\)\(y,x,z\)
4\(c\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
4\(b\)\(2..\)\(0,\frac{1}{2},z\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(\frac{1}{2},0,z\)
2\(a\)\(2.mm\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
380103\(P\ 4\ c\ c\)\((0,0,0)+\)
8\(d\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z+\frac{1}{2}\)\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y,x,z+\frac{1}{2}\)
4\(c\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,z+\frac{1}{2}\)
2\(b\)\(4..\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
2\(a\)\(4..\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)
381104\(P\ 4\ n\ c\)\((0,0,0)+\)
8\(c\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
4\(b\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(0,\frac{1}{2},z+\frac{1}{2}\)
2\(a\)\(4..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
382105\(P\ 4_2\ m\ c\)\((0,0,0)+\)
8\(f\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z+\frac{1}{2}\)\(y,\bar{x},z+\frac{1}{2}\)
\(x,\bar{y},z\)\(\bar{x},y,z\)\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y,x,z+\frac{1}{2}\)
4\(e\)\(.m.\)\(x,\frac{1}{2},z\)\(\bar{x},\frac{1}{2},z\)\(\frac{1}{2},x,z+\frac{1}{2}\)\(\frac{1}{2},\bar{x},z+\frac{1}{2}\)
4\(d\)\(.m.\)\(x,0,z\)\(\bar{x},0,z\)\(0,x,z+\frac{1}{2}\)\(0,\bar{x},z+\frac{1}{2}\)
2\(c\)\(2mm.\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z+\frac{1}{2}\)
2\(b\)\(2mm.\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
2\(a\)\(2mm.\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)
383106\(P\ 4_2\ b\ c\)\((0,0,0)+\)
8\(c\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z+\frac{1}{2}\)\(y,\bar{x},z+\frac{1}{2}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
4\(b\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},z+\frac{1}{2}\)
4\(a\)\(2..\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
384107\(I\ 4\ m\ m\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(e\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(x,\bar{y},z\)\(\bar{x},y,z\)\(\bar{y},\bar{x},z\)\(y,x,z\)
8\(d\)\(.m.\)\(x,0,z\)\(\bar{x},0,z\)\(0,x,z\)\(0,\bar{x},z\)
8\(c\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,z\)\(x,\bar{x},z\)
4\(b\)\(2mm.\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)
2\(a\)\(4mm\)\(0,0,z\)
385108\(I\ 4\ c\ m\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(d\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z+\frac{1}{2}\)\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y,x,z+\frac{1}{2}\)
8\(c\)\(..m\)\(x,x+\frac{1}{2},z\)\(\bar{x},\bar{x}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},x,z\)\(x+\frac{1}{2},\bar{x},z\)
4\(b\)\(2.mm\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},z\)
4\(a\)\(4..\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)
386109\(I\ 4_1\ m\ d\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(c\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},\bar{x},z+\frac{3}{4}\)
\(x,\bar{y},z\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},\bar{x}+\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},x,z+\frac{3}{4}\)
8\(b\)\(.m.\)\(0,y,z\)\(\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},0,z+\frac{3}{4}\)
4\(a\)\(2mm.\)\(0,0,z\)\(0,\frac{1}{2},z+\frac{1}{4}\)
387110\(I\ 4_1\ c\ d\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(b\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},\bar{x},z+\frac{3}{4}\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)\(\bar{y},\bar{x}+\frac{1}{2},z+\frac{3}{4}\)\(y+\frac{1}{2},x,z+\frac{1}{4}\)
8\(a\)\(2..\)\(0,0,z\)\(0,\frac{1}{2},z+\frac{1}{4}\)\(0,0,z+\frac{1}{2}\)\(0,\frac{1}{2},z+\frac{3}{4}\)
388111\(P\ \bar{4}\ 2\ m\)\((0,0,0)+\)
8\(o\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(\bar{y},\bar{x},z\)\(y,x,z\)
4\(n\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(x,\bar{x},\bar{z}\)\(\bar{x},x,\bar{z}\)
4\(m\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,z\)
4\(l\)\(.2.\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(\frac{1}{2},\bar{x},0\)\(\frac{1}{2},x,0\)
4\(k\)\(.2.\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)\(0,x,\frac{1}{2}\)
4\(j\)\(.2.\)\(x,\frac{1}{2},\frac{1}{2}\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)\(\frac{1}{2},x,\frac{1}{2}\)
4\(i\)\(.2.\)\(x,0,0\)\(\bar{x},0,0\)\(0,\bar{x},0\)\(0,x,0\)
2\(h\)\(2.mm\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)
2\(g\)\(2.mm\)\(0,0,z\)\(0,0,\bar{z}\)
2\(f\)\(222\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
2\(e\)\(222\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)
1\(d\)\(\bar{4}2m\)\(\frac{1}{2},\frac{1}{2},0\)
1\(c\)\(\bar{4}2m\)\(0,0,\frac{1}{2}\)
1\(b\)\(\bar{4}2m\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(a\)\(\bar{4}2m\)\(0,0,0\)
389112\(P\ \bar{4}\ 2\ c\)\((0,0,0)+\)
8\(n\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(\bar{x},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y},\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y,x,z+\frac{1}{2}\)
4\(m\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,z+\frac{1}{2}\)
4\(l\)\(2..\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
4\(k\)\(2..\)\(0,0,z\)\(0,0,\bar{z}\)\(0,0,\bar{z}+\frac{1}{2}\)\(0,0,z+\frac{1}{2}\)
4\(j\)\(.2.\)\(0,y,\frac{1}{4}\)\(0,\bar{y},\frac{1}{4}\)\(y,0,\frac{3}{4}\)\(\bar{y},0,\frac{3}{4}\)
4\(i\)\(.2.\)\(x,\frac{1}{2},\frac{1}{4}\)\(\bar{x},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\bar{x},\frac{3}{4}\)\(\frac{1}{2},x,\frac{3}{4}\)
4\(h\)\(.2.\)\(\frac{1}{2},y,\frac{1}{4}\)\(\frac{1}{2},\bar{y},\frac{1}{4}\)\(y,\frac{1}{2},\frac{3}{4}\)\(\bar{y},\frac{1}{2},\frac{3}{4}\)
4\(g\)\(.2.\)\(x,0,\frac{1}{4}\)\(\bar{x},0,\frac{1}{4}\)\(0,\bar{x},\frac{3}{4}\)\(0,x,\frac{3}{4}\)
2\(f\)\(\bar{4}..\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(e\)\(\bar{4}..\)\(0,0,0\)\(0,0,\frac{1}{2}\)
2\(d\)\(222\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
2\(c\)\(222\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)
2\(b\)\(222\)\(\frac{1}{2},0,\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)
2\(a\)\(222\)\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
390113\(P\ \bar{4}\ 2_1\ m\)\((0,0,0)+\)
8\(f\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(y+\frac{1}{2},x+\frac{1}{2},z\)
4\(e\)\(..m\)\(x,x+\frac{1}{2},z\)\(\bar{x},\bar{x}+\frac{1}{2},z\)\(x+\frac{1}{2},\bar{x},\bar{z}\)\(\bar{x}+\frac{1}{2},x,\bar{z}\)
4\(d\)\(2..\)\(0,0,z\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(\frac{1}{2},\frac{1}{2},z\)
2\(c\)\(2.mm\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)
2\(b\)\(\bar{4}..\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(a\)\(\bar{4}..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)
391114\(P\ \bar{4}\ 2_1\ c\)\((0,0,0)+\)
8\(e\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
4\(d\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(0,\frac{1}{2},z+\frac{1}{2}\)
4\(c\)\(2..\)\(0,0,z\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
2\(b\)\(\bar{4}..\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(\bar{4}..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
392115\(P\ \bar{4}\ m\ 2\)\((0,0,0)+\)
8\(l\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z\)\(\bar{x},y,z\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
4\(k\)\(.m.\)\(x,\frac{1}{2},z\)\(\bar{x},\frac{1}{2},z\)\(\frac{1}{2},\bar{x},\bar{z}\)\(\frac{1}{2},x,\bar{z}\)
4\(j\)\(.m.\)\(x,0,z\)\(\bar{x},0,z\)\(0,\bar{x},\bar{z}\)\(0,x,\bar{z}\)
4\(i\)\(..2\)\(x,x,\frac{1}{2}\)\(\bar{x},\bar{x},\frac{1}{2}\)\(x,\bar{x},\frac{1}{2}\)\(\bar{x},x,\frac{1}{2}\)
4\(h\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(x,\bar{x},0\)\(\bar{x},x,0\)
2\(g\)\(2mm.\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)
2\(f\)\(2mm.\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)
2\(e\)\(2mm.\)\(0,0,z\)\(0,0,\bar{z}\)
1\(d\)\(\bar{4}m2\)\(0,0,\frac{1}{2}\)
1\(c\)\(\bar{4}m2\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(b\)\(\bar{4}m2\)\(\frac{1}{2},\frac{1}{2},0\)
1\(a\)\(\bar{4}m2\)\(0,0,0\)
393116\(P\ \bar{4}\ c\ 2\)\((0,0,0)+\)
8\(j\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z+\frac{1}{2}\)\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
4\(i\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)
4\(h\)\(2..\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)
4\(g\)\(2..\)\(0,0,z\)\(0,0,\bar{z}\)\(0,0,z+\frac{1}{2}\)\(0,0,\bar{z}+\frac{1}{2}\)
4\(f\)\(..2\)\(x,x,\frac{3}{4}\)\(\bar{x},\bar{x},\frac{3}{4}\)\(x,\bar{x},\frac{1}{4}\)\(\bar{x},x,\frac{1}{4}\)
4\(e\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x},\bar{x},\frac{1}{4}\)\(x,\bar{x},\frac{3}{4}\)\(\bar{x},x,\frac{3}{4}\)
2\(d\)\(\bar{4}..\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(c\)\(\bar{4}..\)\(0,0,0\)\(0,0,\frac{1}{2}\)
2\(b\)\(2.22\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)
2\(a\)\(2.22\)\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
394117\(P\ \bar{4}\ b\ 2\)\((0,0,0)+\)
8\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}\)
4\(h\)\(..2\)\(x,x+\frac{1}{2},\frac{1}{2}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x,\frac{1}{2}\)
4\(g\)\(..2\)\(x,x+\frac{1}{2},0\)\(\bar{x},\bar{x}+\frac{1}{2},0\)\(x+\frac{1}{2},\bar{x},0\)\(\bar{x}+\frac{1}{2},x,0\)
4\(f\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},\bar{z}\)
4\(e\)\(2..\)\(0,0,z\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)
2\(d\)\(2.22\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)
2\(c\)\(2.22\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
2\(b\)\(\bar{4}..\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(a\)\(\bar{4}..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)
395118\(P\ \bar{4}\ n\ 2\)\((0,0,0)+\)
8\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
4\(h\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)
4\(g\)\(..2\)\(x,x+\frac{1}{2},\frac{1}{4}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},\bar{x},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{3}{4}\)
4\(f\)\(..2\)\(x,\bar{x}+\frac{1}{2},\frac{1}{4}\)\(\bar{x},x+\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\bar{x},\frac{3}{4}\)\(x+\frac{1}{2},x,\frac{3}{4}\)
4\(e\)\(2..\)\(0,0,z\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)
2\(d\)\(2.22\)\(0,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)
2\(c\)\(2.22\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
2\(b\)\(\bar{4}..\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(\bar{4}..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
396119\(I\ \bar{4}\ m\ 2\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(j\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z\)\(\bar{x},y,z\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
8\(i\)\(.m.\)\(x,0,z\)\(\bar{x},0,z\)\(0,\bar{x},\bar{z}\)\(0,x,\bar{z}\)
8\(h\)\(..2\)\(x,x+\frac{1}{2},\frac{1}{4}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},\bar{x},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{3}{4}\)
8\(g\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(x,\bar{x},0\)\(\bar{x},x,0\)
4\(f\)\(2mm.\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)
4\(e\)\(2mm.\)\(0,0,z\)\(0,0,\bar{z}\)
2\(d\)\(\bar{4}m2\)\(0,\frac{1}{2},\frac{3}{4}\)
2\(c\)\(\bar{4}m2\)\(0,\frac{1}{2},\frac{1}{4}\)
2\(b\)\(\bar{4}m2\)\(0,0,\frac{1}{2}\)
2\(a\)\(\bar{4}m2\)\(0,0,0\)
397120\(I\ \bar{4}\ c\ 2\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z+\frac{1}{2}\)\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
8\(h\)\(..2\)\(x,x+\frac{1}{2},0\)\(\bar{x},\bar{x}+\frac{1}{2},0\)\(x+\frac{1}{2},\bar{x},0\)\(\bar{x}+\frac{1}{2},x,0\)
8\(g\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)
8\(f\)\(2..\)\(0,0,z\)\(0,0,\bar{z}\)\(0,0,z+\frac{1}{2}\)\(0,0,\bar{z}+\frac{1}{2}\)
8\(e\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x},\bar{x},\frac{1}{4}\)\(x,\bar{x},\frac{3}{4}\)\(\bar{x},x,\frac{3}{4}\)
4\(d\)\(2.22\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
4\(c\)\(\bar{4}..\)\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)
4\(b\)\(\bar{4}..\)\(0,0,0\)\(0,0,\frac{1}{2}\)
4\(a\)\(2.22\)\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
398121\(I\ \bar{4}\ 2\ m\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(j\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(\bar{y},\bar{x},z\)\(y,x,z\)
8\(i\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(x,\bar{x},\bar{z}\)\(\bar{x},x,\bar{z}\)
8\(h\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,z\)
8\(g\)\(.2.\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)\(0,x,\frac{1}{2}\)
8\(f\)\(.2.\)\(x,0,0\)\(\bar{x},0,0\)\(0,\bar{x},0\)\(0,x,0\)
4\(e\)\(2.mm\)\(0,0,z\)\(0,0,\bar{z}\)
4\(d\)\(\bar{4}..\)\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)
4\(c\)\(222\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
2\(b\)\(\bar{4}2m\)\(0,0,\frac{1}{2}\)
2\(a\)\(\bar{4}2m\)\(0,0,0\)
399122\(I\ \bar{4}\ 2\ d\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
16\(e\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(\bar{x}+\frac{1}{2},y,\bar{z}+\frac{3}{4}\)\(x+\frac{1}{2},\bar{y},\bar{z}+\frac{3}{4}\)\(\bar{y}+\frac{1}{2},\bar{x},z+\frac{3}{4}\)\(y+\frac{1}{2},x,z+\frac{3}{4}\)
8\(d\)\(.2.\)\(x,\frac{1}{4},\frac{1}{8}\)\(\bar{x},\frac{3}{4},\frac{1}{8}\)\(\frac{1}{4},\bar{x},\frac{7}{8}\)\(\frac{3}{4},x,\frac{7}{8}\)
8\(c\)\(2..\)\(0,0,z\)\(0,0,\bar{z}\)\(\frac{1}{2},0,\bar{z}+\frac{3}{4}\)\(\frac{1}{2},0,z+\frac{3}{4}\)
4\(b\)\(\bar{4}..\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{4}\)
4\(a\)\(\bar{4}..\)\(0,0,0\)\(\frac{1}{2},0,\frac{3}{4}\)
400123\(P\ 4/m\ 2/m\ 2/m\)\((0,0,0)+\)
16\(u\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z\)\(\bar{x},y,z\)\(\bar{y},\bar{x},z\)\(y,x,z\)
8\(t\)\(.m.\)\(x,\frac{1}{2},z\)\(\bar{x},\frac{1}{2},z\)\(\frac{1}{2},x,z\)\(\frac{1}{2},\bar{x},z\)
\(\bar{x},\frac{1}{2},\bar{z}\)\(x,\frac{1}{2},\bar{z}\)\(\frac{1}{2},x,\bar{z}\)\(\frac{1}{2},\bar{x},\bar{z}\)
8\(s\)\(.m.\)\(x,0,z\)\(\bar{x},0,z\)\(0,x,z\)\(0,\bar{x},z\)
\(\bar{x},0,\bar{z}\)\(x,0,\bar{z}\)\(0,x,\bar{z}\)\(0,\bar{x},\bar{z}\)
8\(r\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,z\)\(x,\bar{x},z\)
\(\bar{x},x,\bar{z}\)\(x,\bar{x},\bar{z}\)\(x,x,\bar{z}\)\(\bar{x},\bar{x},\bar{z}\)
8\(q\)\(m..\)\(x,y,\frac{1}{2}\)\(\bar{x},\bar{y},\frac{1}{2}\)\(\bar{y},x,\frac{1}{2}\)\(y,\bar{x},\frac{1}{2}\)
\(\bar{x},y,\frac{1}{2}\)\(x,\bar{y},\frac{1}{2}\)\(y,x,\frac{1}{2}\)\(\bar{y},\bar{x},\frac{1}{2}\)
8\(p\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,0\)\(y,\bar{x},0\)
\(\bar{x},y,0\)\(x,\bar{y},0\)\(y,x,0\)\(\bar{y},\bar{x},0\)
4\(o\)\(m2m.\)\(x,\frac{1}{2},\frac{1}{2}\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x,\frac{1}{2}\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
4\(n\)\(m2m.\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
4\(m\)\(m2m.\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
4\(l\)\(m2m.\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
4\(k\)\(m.2m\)\(x,x,\frac{1}{2}\)\(\bar{x},\bar{x},\frac{1}{2}\)\(\bar{x},x,\frac{1}{2}\)\(x,\bar{x},\frac{1}{2}\)
4\(j\)\(m.2m\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x},x,0\)\(x,\bar{x},0\)
4\(i\)\(2mm.\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}\)
2\(h\)\(4mm\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)
2\(g\)\(4mm\)\(0,0,z\)\(0,0,\bar{z}\)
2\(f\)\(mmm.\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
2\(e\)\(mmm.\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)
1\(d\)\(4/mmm\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(c\)\(4/mmm\)\(\frac{1}{2},\frac{1}{2},0\)
1\(b\)\(4/mmm\)\(0,0,\frac{1}{2}\)
1\(a\)\(4/mmm\)\(0,0,0\)
401124\(P\ 4/m\ 2/c\ 2/c\)\((0,0,0)+\)
16\(n\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z+\frac{1}{2}\)\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y,x,z+\frac{1}{2}\)
8\(m\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,0\)\(y,\bar{x},0\)
\(\bar{x},y,\frac{1}{2}\)\(x,\bar{y},\frac{1}{2}\)\(y,x,\frac{1}{2}\)\(\bar{y},\bar{x},\frac{1}{2}\)
8\(l\)\(.2.\)\(x,\frac{1}{2},\frac{1}{4}\)\(\bar{x},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},x,\frac{1}{4}\)\(\frac{1}{2},\bar{x},\frac{1}{4}\)
\(\bar{x},\frac{1}{2},\frac{3}{4}\)\(x,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},\bar{x},\frac{3}{4}\)\(\frac{1}{2},x,\frac{3}{4}\)
8\(k\)\(.2.\)\(x,0,\frac{1}{4}\)\(\bar{x},0,\frac{1}{4}\)\(0,x,\frac{1}{4}\)\(0,\bar{x},\frac{1}{4}\)
\(\bar{x},0,\frac{3}{4}\)\(x,0,\frac{3}{4}\)\(0,\bar{x},\frac{3}{4}\)\(0,x,\frac{3}{4}\)
8\(j\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x},\bar{x},\frac{1}{4}\)\(\bar{x},x,\frac{1}{4}\)\(x,\bar{x},\frac{1}{4}\)
\(\bar{x},\bar{x},\frac{3}{4}\)\(x,x,\frac{3}{4}\)\(x,\bar{x},\frac{3}{4}\)\(\bar{x},x,\frac{3}{4}\)
8\(i\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)
\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,z+\frac{1}{2}\)
4\(h\)\(4..\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
4\(g\)\(4..\)\(0,0,z\)\(0,0,\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}\)\(0,0,z+\frac{1}{2}\)
4\(f\)\(222\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
4\(e\)\(2/m..\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)
2\(d\)\(4/m..\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(c\)\(422\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)
2\(b\)\(4/m..\)\(0,0,0\)\(0,0,\frac{1}{2}\)
2\(a\)\(422\)\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
402125\(P\ 4/n\ 2/b\ 2/m\)\((0,0,0)+\)
16\(n\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(y+\frac{1}{2},x+\frac{1}{2},z\)
8\(m\)\(..m\)\(x,x+\frac{1}{2},z\)\(\bar{x},\bar{x}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},x,z\)\(x+\frac{1}{2},\bar{x},z\)
\(\bar{x},x+\frac{1}{2},\bar{z}\)\(x,\bar{x}+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},x,\bar{z}\)\(\bar{x}+\frac{1}{2},\bar{x},\bar{z}\)
8\(l\)\(.2.\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)
8\(k\)\(.2.\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(\bar{x}+\frac{1}{2},\frac{1}{2},0\)\(x+\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(\frac{1}{2},x+\frac{1}{2},0\)
8\(j\)\(..2\)\(x,x,\frac{1}{2}\)\(\bar{x},\bar{x},\frac{1}{2}\)\(\bar{x},x,\frac{1}{2}\)\(x,\bar{x},\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)
8\(i\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x},x,0\)\(x,\bar{x},0\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(x+\frac{1}{2},x+\frac{1}{2},0\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},0\)
4\(h\)\(2.mm\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}\)
4\(g\)\(4..\)\(0,0,z\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(\frac{1}{2},\frac{1}{2},z\)
4\(f\)\(..2/m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)
4\(e\)\(..2/m\)\(\frac{1}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{3}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)\(\frac{1}{4},\frac{3}{4},0\)
2\(d\)\(\bar{4}2m\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)
2\(c\)\(\bar{4}2m\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
2\(b\)\(422\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(a\)\(422\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)
403125\(P\ 4/n\ 2/b\ 2/m\)\((0,0,0)+\)
16\(n\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},x,z\)\(y,\bar{x}+\frac{1}{2},z\)
\(\bar{x}+\frac{1}{2},y,\bar{z}\)\(x,\bar{y}+\frac{1}{2},\bar{z}\)\(y,x,\bar{z}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x},\bar{z}\)\(\bar{y},x+\frac{1}{2},\bar{z}\)
\(x+\frac{1}{2},\bar{y},z\)\(\bar{x},y+\frac{1}{2},z\)\(\bar{y},\bar{x},z\)\(y+\frac{1}{2},x+\frac{1}{2},z\)
8\(m\)\(..m\)\(x,\bar{x},z\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},z\)\(x+\frac{1}{2},x,z\)\(\bar{x},\bar{x}+\frac{1}{2},z\)
\(\bar{x}+\frac{1}{2},\bar{x},\bar{z}\)\(x,x+\frac{1}{2},\bar{z}\)\(\bar{x},x,\bar{z}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}\)
8\(l\)\(.2.\)\(x,\frac{1}{4},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{1}{2}\)\(\frac{1}{4},x,\frac{1}{2}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x},\frac{3}{4},\frac{1}{2}\)\(x+\frac{1}{2},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\bar{x},\frac{1}{2}\)\(\frac{3}{4},x+\frac{1}{2},\frac{1}{2}\)
8\(k\)\(.2.\)\(x,\frac{1}{4},0\)\(\bar{x}+\frac{1}{2},\frac{1}{4},0\)\(\frac{1}{4},x,0\)\(\frac{1}{4},\bar{x}+\frac{1}{2},0\)
\(\bar{x},\frac{3}{4},0\)\(x+\frac{1}{2},\frac{3}{4},0\)\(\frac{3}{4},\bar{x},0\)\(\frac{3}{4},x+\frac{1}{2},0\)
8\(j\)\(..2\)\(x,x,\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x,\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x},\bar{x},\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x},\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\frac{1}{2}\)
8\(i\)\(..2\)\(x,x,0\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(\bar{x}+\frac{1}{2},x,0\)\(x,\bar{x}+\frac{1}{2},0\)
\(\bar{x},\bar{x},0\)\(x+\frac{1}{2},x+\frac{1}{2},0\)\(x+\frac{1}{2},\bar{x},0\)\(\bar{x},x+\frac{1}{2},0\)
4\(h\)\(2.mm\)\(\frac{3}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{3}{4},z\)\(\frac{3}{4},\frac{1}{4},\bar{z}\)\(\frac{1}{4},\frac{3}{4},\bar{z}\)
4\(g\)\(4..\)\(\frac{1}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{1}{4},\bar{z}\)\(\frac{3}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{3}{4},z\)
4\(f\)\(..2/m\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
4\(e\)\(..2/m\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)
2\(d\)\(\bar{4}2m\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)
2\(c\)\(\bar{4}2m\)\(\frac{3}{4},\frac{1}{4},0\)\(\frac{1}{4},\frac{3}{4},0\)
2\(b\)\(422\)\(\frac{1}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{2}\)
2\(a\)\(422\)\(\frac{1}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{3}{4},0\)
404126\(P\ 4/n\ 2/n\ 2/c\)\((0,0,0)+\)
16\(k\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
8\(j\)\(.2.\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\frac{1}{2},0\)\(x+\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(\frac{1}{2},x+\frac{1}{2},0\)
8\(i\)\(.2.\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)
8\(h\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x},x,0\)\(x,\bar{x},0\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)
8\(g\)\(2..\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)\(0,\frac{1}{2},\bar{z}\)
\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,z+\frac{1}{2}\)
8\(f\)\(\bar{1}\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)
\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
4\(e\)\(4..\)\(0,0,z\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
4\(d\)\(\bar{4}..\)\(\frac{1}{2},0,\frac{1}{4}\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)
4\(c\)\(222\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)
2\(b\)\(422\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(422\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
405126\(P\ 4/n\ 2/n\ 2/c\)\((0,0,0)+\)
16\(k\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},x,z\)\(y,\bar{x}+\frac{1}{2},z\)
\(\bar{x}+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x},\bar{z}\)\(\bar{y},x+\frac{1}{2},\bar{z}\)
\(x+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
8\(j\)\(.2.\)\(x,\frac{3}{4},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},x,\frac{1}{4}\)\(\frac{3}{4},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\bar{x},\frac{1}{4},\frac{3}{4}\)\(x+\frac{1}{2},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\bar{x},\frac{3}{4}\)\(\frac{1}{4},x+\frac{1}{2},\frac{3}{4}\)
8\(i\)\(.2.\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\bar{x},\frac{3}{4},\frac{3}{4}\)\(x+\frac{1}{2},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\bar{x},\frac{3}{4}\)\(\frac{3}{4},x+\frac{1}{2},\frac{3}{4}\)
8\(h\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{1}{4}\)\(x,\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\bar{x},\bar{x},\frac{3}{4}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{3}{4}\)\(x+\frac{1}{2},\bar{x},\frac{3}{4}\)\(\bar{x},x+\frac{1}{2},\frac{3}{4}\)
8\(g\)\(2..\)\(\frac{1}{4},\frac{3}{4},z\)\(\frac{3}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{3}{4},\bar{z}+\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\bar{z}+\frac{1}{2}\)
\(\frac{3}{4},\frac{1}{4},\bar{z}\)\(\frac{1}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{1}{4},z+\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},z+\frac{1}{2}\)
8\(f\)\(\bar{1}\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)
\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
4\(e\)\(4..\)\(\frac{1}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{1}{4},\bar{z}+\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{3}{4},z+\frac{1}{2}\)
4\(d\)\(\bar{4}..\)\(\frac{1}{4},\frac{3}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)
4\(c\)\(222\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)
2\(b\)\(422\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)
2\(a\)\(422\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
406127\(P\ 4/m\ 2_1/b\ m\)\((0,0,0)+\)
16\(l\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(y+\frac{1}{2},x+\frac{1}{2},z\)
8\(k\)\(..m\)\(x,x+\frac{1}{2},z\)\(\bar{x},\bar{x}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},x,z\)\(x+\frac{1}{2},\bar{x},z\)
\(\bar{x}+\frac{1}{2},x,\bar{z}\)\(x+\frac{1}{2},\bar{x},\bar{z}\)\(x,x+\frac{1}{2},\bar{z}\)\(\bar{x},\bar{x}+\frac{1}{2},\bar{z}\)
8\(j\)\(m..\)\(x,y,\frac{1}{2}\)\(\bar{x},\bar{y},\frac{1}{2}\)\(\bar{y},x,\frac{1}{2}\)\(y,\bar{x},\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
8\(i\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,0\)\(y,\bar{x},0\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},0\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},0\)\(y+\frac{1}{2},x+\frac{1}{2},0\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},0\)
4\(h\)\(m.2m\)\(x,x+\frac{1}{2},\frac{1}{2}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x,\frac{1}{2}\)\(x+\frac{1}{2},\bar{x},\frac{1}{2}\)
4\(g\)\(m.2m\)\(x,x+\frac{1}{2},0\)\(\bar{x},\bar{x}+\frac{1}{2},0\)\(\bar{x}+\frac{1}{2},x,0\)\(x+\frac{1}{2},\bar{x},0\)
4\(f\)\(2.mm\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(\frac{1}{2},0,\bar{z}\)\(0,\frac{1}{2},\bar{z}\)
4\(e\)\(4..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},z\)
2\(d\)\(m.mm\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
2\(c\)\(m.mm\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)
2\(b\)\(4/m..\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(a\)\(4/m..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)
407128\(P\ 4/m\ 2_1/n\ c\)\((0,0,0)+\)
16\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
8\(h\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,0\)\(y,\bar{x},0\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
8\(g\)\(..2\)\(x,x+\frac{1}{2},\frac{1}{4}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{1}{4}\)\(x+\frac{1}{2},\bar{x},\frac{1}{4}\)
\(\bar{x},\bar{x}+\frac{1}{2},\frac{3}{4}\)\(x,x+\frac{1}{2},\frac{3}{4}\)\(x+\frac{1}{2},\bar{x},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{3}{4}\)
8\(f\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(0,\frac{1}{2},z+\frac{1}{2}\)
4\(e\)\(4..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
4\(d\)\(2.22\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
4\(c\)\(2/m..\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
2\(b\)\(4/m..\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(4/m..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
408129\(P\ 4/n\ 2_1/m\ m\)\((0,0,0)+\)
16\(k\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z\)\(\bar{x},y,z\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(y+\frac{1}{2},x+\frac{1}{2},z\)
8\(j\)\(..m\)\(x,x+\frac{1}{2},z\)\(\bar{x},\bar{x}+\frac{1}{2},z\)\(\bar{x},x+\frac{1}{2},z\)\(x,\bar{x}+\frac{1}{2},z\)
\(\bar{x}+\frac{1}{2},x,\bar{z}\)\(x+\frac{1}{2},\bar{x},\bar{z}\)\(x+\frac{1}{2},x,\bar{z}\)\(\bar{x}+\frac{1}{2},\bar{x},\bar{z}\)
8\(i\)\(.m.\)\(0,y,z\)\(0,\bar{y},z\)\(\bar{y}+\frac{1}{2},\frac{1}{2},z\)\(y+\frac{1}{2},\frac{1}{2},z\)
\(\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(y,0,\bar{z}\)\(\bar{y},0,\bar{z}\)
8\(h\)\(..2\)\(x,x,\frac{1}{2}\)\(\bar{x},\bar{x},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x,\bar{x},\frac{1}{2}\)\(\bar{x},x,\frac{1}{2}\)
8\(g\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},0\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},0\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(x+\frac{1}{2},x+\frac{1}{2},0\)\(x,\bar{x},0\)\(\bar{x},x,0\)
4\(f\)\(2mm.\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(0,0,\bar{z}\)
4\(e\)\(..2/m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)
4\(d\)\(..2/m\)\(\frac{1}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{3}{4},0\)\(\frac{1}{4},\frac{3}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)
2\(c\)\(4mm\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}\)
2\(b\)\(\bar{4}m2\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(a\)\(\bar{4}m2\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)
409129\(P\ 4/n\ 2_1/m\ m\)\((0,0,0)+\)
16\(k\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},x,z\)\(y,\bar{x}+\frac{1}{2},z\)
\(\bar{x},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y},\bar{z}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x},\bar{z}\)\(\bar{y},x+\frac{1}{2},\bar{z}\)
\(x,\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y,z\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(y,x,z\)
8\(j\)\(..m\)\(x,x,z\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},x,z\)\(x,\bar{x}+\frac{1}{2},z\)
\(\bar{x},x+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{x},\bar{z}\)\(x+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(\bar{x},\bar{x},\bar{z}\)
8\(i\)\(.m.\)\(\frac{1}{4},y,z\)\(\frac{1}{4},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},\frac{1}{4},z\)\(y,\frac{1}{4},z\)
\(\frac{3}{4},y+\frac{1}{2},\bar{z}\)\(\frac{3}{4},\bar{y},\bar{z}\)\(y+\frac{1}{2},\frac{3}{4},\bar{z}\)\(\bar{y},\frac{3}{4},\bar{z}\)
8\(h\)\(..2\)\(x,\bar{x},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},x,\frac{1}{2}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x},x,\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x},\frac{1}{2}\)\(x,x+\frac{1}{2},\frac{1}{2}\)
8\(g\)\(..2\)\(x,\bar{x},0\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},0\)\(x+\frac{1}{2},x,0\)\(\bar{x},\bar{x}+\frac{1}{2},0\)
\(\bar{x},x,0\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(\bar{x}+\frac{1}{2},\bar{x},0\)\(x,x+\frac{1}{2},0\)
4\(f\)\(2mm.\)\(\frac{3}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{3}{4},z\)\(\frac{1}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{1}{4},\bar{z}\)
4\(e\)\(..2/m\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
4\(d\)\(..2/m\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)
2\(c\)\(4mm\)\(\frac{1}{4},\frac{1}{4},z\)\(\frac{3}{4},\frac{3}{4},\bar{z}\)
2\(b\)\(\bar{4}m2\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)
2\(a\)\(\bar{4}m2\)\(\frac{3}{4},\frac{1}{4},0\)\(\frac{1}{4},\frac{3}{4},0\)
410130\(P\ 4/n\ 2_1/c\ c\)\((0,0,0)+\)
16\(g\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
8\(f\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x},\bar{x},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{3}{4}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{3}{4}\)\(x,\bar{x},\frac{3}{4}\)\(\bar{x},x,\frac{3}{4}\)
8\(e\)\(2..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}+\frac{1}{2}\)
\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(0,0,\bar{z}\)\(0,0,z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
8\(d\)\(\bar{1}\)\(\frac{1}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{3}{4},0\)\(\frac{1}{4},\frac{3}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)
\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{2}\)
4\(c\)\(4..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}\)\(0,\frac{1}{2},z+\frac{1}{2}\)
4\(b\)\(\bar{4}..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(0,0,\frac{1}{2}\)
4\(a\)\(2.22\)\(0,0,\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)\(0,0,\frac{3}{4}\)
411130\(P\ 4/n\ 2_1/c\ c\)\((0,0,0)+\)
16\(g\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},x,z\)\(y,\bar{x}+\frac{1}{2},z\)
\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x},\bar{z}\)\(\bar{y},x+\frac{1}{2},\bar{z}\)
\(x,\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y,z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y,x,z+\frac{1}{2}\)
8\(f\)\(..2\)\(x,\bar{x},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},x,\frac{1}{4}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\bar{x},x,\frac{3}{4}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},\bar{x},\frac{3}{4}\)\(x,x+\frac{1}{2},\frac{3}{4}\)
8\(e\)\(2..\)\(\frac{3}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{3}{4},z\)\(\frac{1}{4},\frac{3}{4},\bar{z}+\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\bar{z}+\frac{1}{2}\)
\(\frac{1}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{1}{4},\bar{z}\)\(\frac{3}{4},\frac{1}{4},z+\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},z+\frac{1}{2}\)
8\(d\)\(\bar{1}\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)
\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(0,0,\frac{1}{2}\)
4\(c\)\(4..\)\(\frac{1}{4},\frac{1}{4},z\)\(\frac{3}{4},\frac{3}{4},\bar{z}+\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\bar{z}\)\(\frac{1}{4},\frac{1}{4},z+\frac{1}{2}\)
4\(b\)\(\bar{4}..\)\(\frac{3}{4},\frac{1}{4},0\)\(\frac{1}{4},\frac{3}{4},0\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)
4\(a\)\(2.22\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)
412131\(P\ 4_2/m\ 2/m\ 2/c\)\((0,0,0)+\)
16\(r\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z+\frac{1}{2}\)\(y,\bar{x},z+\frac{1}{2}\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}+\frac{1}{2}\)\(\bar{y},x,\bar{z}+\frac{1}{2}\)
\(x,\bar{y},z\)\(\bar{x},y,z\)\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y,x,z+\frac{1}{2}\)
8\(q\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,\frac{1}{2}\)\(y,\bar{x},\frac{1}{2}\)
\(\bar{x},y,0\)\(x,\bar{y},0\)\(y,x,\frac{1}{2}\)\(\bar{y},\bar{x},\frac{1}{2}\)
8\(p\)\(.m.\)\(\frac{1}{2},y,z\)\(\frac{1}{2},\bar{y},z\)\(\bar{y},\frac{1}{2},z+\frac{1}{2}\)\(y,\frac{1}{2},z+\frac{1}{2}\)
\(\frac{1}{2},y,\bar{z}\)\(\frac{1}{2},\bar{y},\bar{z}\)\(y,\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y},\frac{1}{2},\bar{z}+\frac{1}{2}\)
8\(o\)\(.m.\)\(0,y,z\)\(0,\bar{y},z\)\(\bar{y},0,z+\frac{1}{2}\)\(y,0,z+\frac{1}{2}\)
\(0,y,\bar{z}\)\(0,\bar{y},\bar{z}\)\(y,0,\bar{z}+\frac{1}{2}\)\(\bar{y},0,\bar{z}+\frac{1}{2}\)
8\(n\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x},\bar{x},\frac{1}{4}\)\(\bar{x},x,\frac{3}{4}\)\(x,\bar{x},\frac{3}{4}\)
\(\bar{x},\bar{x},\frac{3}{4}\)\(x,x,\frac{3}{4}\)\(x,\bar{x},\frac{1}{4}\)\(\bar{x},x,\frac{1}{4}\)
4\(m\)\(m2m.\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(\frac{1}{2},x,\frac{1}{2}\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
4\(l\)\(m2m.\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,x,0\)\(0,\bar{x},0\)
4\(k\)\(m2m.\)\(x,\frac{1}{2},\frac{1}{2}\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
4\(j\)\(m2m.\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
4\(i\)\(2mm.\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)
4\(h\)\(2mm.\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)
4\(g\)\(2mm.\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)\(0,0,\bar{z}\)\(0,0,\bar{z}+\frac{1}{2}\)
2\(f\)\(\bar{4}m2\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)
2\(e\)\(\bar{4}m2\)\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
2\(d\)\(mmm.\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,0\)
2\(c\)\(mmm.\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)
2\(b\)\(mmm.\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(a\)\(mmm.\)\(0,0,0\)\(0,0,\frac{1}{2}\)
413132\(P\ 4_2/m\ 2/c\ 2/m\)\((0,0,0)+\)
16\(p\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z+\frac{1}{2}\)\(y,\bar{x},z+\frac{1}{2}\)
\(\bar{x},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}+\frac{1}{2}\)\(\bar{y},x,\bar{z}+\frac{1}{2}\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z+\frac{1}{2}\)\(\bar{y},\bar{x},z\)\(y,x,z\)
8\(o\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,z+\frac{1}{2}\)\(x,\bar{x},z+\frac{1}{2}\)
\(\bar{x},x,\bar{z}+\frac{1}{2}\)\(x,\bar{x},\bar{z}+\frac{1}{2}\)\(x,x,\bar{z}\)\(\bar{x},\bar{x},\bar{z}\)
8\(n\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,\frac{1}{2}\)\(y,\bar{x},\frac{1}{2}\)
\(\bar{x},y,\frac{1}{2}\)\(x,\bar{y},\frac{1}{2}\)\(y,x,0\)\(\bar{y},\bar{x},0\)
8\(m\)\(.2.\)\(x,\frac{1}{2},\frac{1}{4}\)\(\bar{x},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},x,\frac{3}{4}\)\(\frac{1}{2},\bar{x},\frac{3}{4}\)
\(\bar{x},\frac{1}{2},\frac{3}{4}\)\(x,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},\bar{x},\frac{1}{4}\)\(\frac{1}{2},x,\frac{1}{4}\)
8\(l\)\(.2.\)\(x,0,\frac{1}{4}\)\(\bar{x},0,\frac{1}{4}\)\(0,x,\frac{3}{4}\)\(0,\bar{x},\frac{3}{4}\)
\(\bar{x},0,\frac{3}{4}\)\(x,0,\frac{3}{4}\)\(0,\bar{x},\frac{1}{4}\)\(0,x,\frac{1}{4}\)
8\(k\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}\)
\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,z\)
4\(j\)\(m.2m\)\(x,x,\frac{1}{2}\)\(\bar{x},\bar{x},\frac{1}{2}\)\(\bar{x},x,0\)\(x,\bar{x},0\)
4\(i\)\(m.2m\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x},x,\frac{1}{2}\)\(x,\bar{x},\frac{1}{2}\)
4\(h\)\(2.mm\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)
4\(g\)\(2.mm\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)\(0,0,\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}\)
4\(f\)\(2/m..\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,0\)
4\(e\)\(222\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)
2\(d\)\(\bar{4}2m\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)
2\(c\)\(m.mm\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
2\(b\)\(\bar{4}2m\)\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
2\(a\)\(m.mm\)\(0,0,0\)\(0,0,\frac{1}{2}\)
414133\(P\ 4_2/n\ 2/b\ 2/c\)\((0,0,0)+\)
16\(k\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y,x,z+\frac{1}{2}\)
8\(j\)\(..2\)\(x,x+\frac{1}{2},0\)\(\bar{x},\bar{x}+\frac{1}{2},0\)\(\bar{x},x+\frac{1}{2},\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{x},\frac{1}{2}\)\(x+\frac{1}{2},x,\frac{1}{2}\)\(x+\frac{1}{2},\bar{x},0\)\(\bar{x}+\frac{1}{2},x,0\)
8\(i\)\(.2.\)\(x,0,\frac{3}{4}\)\(\bar{x},0,\frac{3}{4}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{3}{4}\)\(x+\frac{1}{2},\frac{1}{2},\frac{3}{4}\)\(0,\bar{x},\frac{1}{4}\)\(0,x,\frac{1}{4}\)
8\(h\)\(.2.\)\(x,0,\frac{1}{4}\)\(\bar{x},0,\frac{1}{4}\)\(\frac{1}{2},x+\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{3}{4}\)
\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(0,\bar{x},\frac{3}{4}\)\(0,x,\frac{3}{4}\)
8\(g\)\(2..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(0,0,\bar{z}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)
\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},z\)\(0,0,z+\frac{1}{2}\)
8\(f\)\(2..\)\(0,\frac{1}{2},z\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)\(0,\frac{1}{2},\bar{z}\)
\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}\)\(\frac{1}{2},0,z\)\(\frac{1}{2},0,z+\frac{1}{2}\)
8\(e\)\(\bar{1}\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)
\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)
4\(d\)\(\bar{4}..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
4\(c\)\(2.22\)\(0,\frac{1}{2},0\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},0,0\)
4\(b\)\(222\)\(0,0,\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(0,0,\frac{3}{4}\)
4\(a\)\(222\)\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
415133\(P\ 4_2/n\ 2/b\ 2/c\)\((0,0,0)+\)
16\(k\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},x,z+\frac{1}{2}\)\(y,\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},y,\bar{z}\)\(x,\bar{y}+\frac{1}{2},\bar{z}\)\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x},\bar{z}+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(x+\frac{1}{2},\bar{y},z\)\(\bar{x},y+\frac{1}{2},z\)\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
8\(j\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{3}{4}\)\(x,\bar{x}+\frac{1}{2},\frac{3}{4}\)
\(\bar{x},\bar{x},\frac{3}{4}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{3}{4}\)\(x+\frac{1}{2},\bar{x},\frac{1}{4}\)\(\bar{x},x+\frac{1}{2},\frac{1}{4}\)
8\(i\)\(.2.\)\(x,\frac{1}{4},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{1}{2}\)\(\frac{1}{4},x,0\)\(\frac{1}{4},\bar{x}+\frac{1}{2},0\)
\(\bar{x},\frac{3}{4},\frac{1}{2}\)\(x+\frac{1}{2},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\bar{x},0\)\(\frac{3}{4},x+\frac{1}{2},0\)
8\(h\)\(.2.\)\(x,\frac{1}{4},0\)\(\bar{x}+\frac{1}{2},\frac{1}{4},0\)\(\frac{1}{4},x,\frac{1}{2}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x},\frac{3}{4},0\)\(x+\frac{1}{2},\frac{3}{4},0\)\(\frac{3}{4},\bar{x},\frac{1}{2}\)\(\frac{3}{4},x+\frac{1}{2},\frac{1}{2}\)
8\(g\)\(2..\)\(\frac{3}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{3}{4},z+\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\bar{z}\)\(\frac{1}{4},\frac{3}{4},\bar{z}+\frac{1}{2}\)
\(\frac{1}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{1}{4},\bar{z}+\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},z\)\(\frac{3}{4},\frac{1}{4},z+\frac{1}{2}\)
8\(f\)\(2..\)\(\frac{1}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{1}{4},z+\frac{1}{2}\)\(\frac{1}{4},\frac{1}{4},\bar{z}\)\(\frac{1}{4},\frac{1}{4},\bar{z}+\frac{1}{2}\)
\(\frac{3}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{3}{4},\bar{z}+\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},z\)\(\frac{3}{4},\frac{3}{4},z+\frac{1}{2}\)
8\(e\)\(\bar{1}\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
4\(d\)\(\bar{4}..\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
4\(c\)\(2.22\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)
4\(b\)\(222\)\(\frac{3}{4},\frac{1}{4},0\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},0\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)
4\(a\)\(222\)\(\frac{1}{4},\frac{1}{4},0\)\(\frac{1}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},0\)\(\frac{3}{4},\frac{3}{4},\frac{1}{2}\)
416134\(P\ 4_2/n\ 2/n\ 2/m\)\((0,0,0)+\)
16\(n\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},\bar{x},z\)\(y,x,z\)
8\(m\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x},x,\bar{z}\)\(x,\bar{x},\bar{z}\)\(x+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
8\(l\)\(..2\)\(x,x+\frac{1}{2},\frac{3}{4}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{3}{4}\)\(\bar{x},x+\frac{1}{2},\frac{1}{4}\)\(x,\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\bar{x}+\frac{1}{2},\bar{x},\frac{3}{4}\)\(x+\frac{1}{2},x,\frac{3}{4}\)\(x+\frac{1}{2},\bar{x},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{1}{4}\)
8\(k\)\(..2\)\(x,x+\frac{1}{2},\frac{1}{4}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(\bar{x},x+\frac{1}{2},\frac{3}{4}\)\(x,\bar{x}+\frac{1}{2},\frac{3}{4}\)
\(\bar{x}+\frac{1}{2},\bar{x},\frac{1}{4}\)\(x+\frac{1}{2},x,\frac{1}{4}\)\(x+\frac{1}{2},\bar{x},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{3}{4}\)
8\(j\)\(.2.\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(\frac{1}{2},x+\frac{1}{2},0\)\(\frac{1}{2},\bar{x}+\frac{1}{2},0\)
\(\bar{x}+\frac{1}{2},\frac{1}{2},0\)\(x+\frac{1}{2},\frac{1}{2},0\)\(0,\bar{x},\frac{1}{2}\)\(0,x,\frac{1}{2}\)
8\(i\)\(.2.\)\(x,0,0\)\(\bar{x},0,0\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(0,\bar{x},0\)\(0,x,0\)
8\(h\)\(2..\)\(0,\frac{1}{2},z\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(0,\frac{1}{2},\bar{z}\)\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(\frac{1}{2},0,z\)
4\(g\)\(2.mm\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)
4\(f\)\(..2/m\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)
4\(e\)\(..2/m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)
4\(d\)\(2.22\)\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
4\(c\)\(222\)\(0,\frac{1}{2},0\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},0,0\)
2\(b\)\(\bar{4}2m\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(\bar{4}2m\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
417134\(P\ 4_2/n\ 2/n\ 2/m\)\((0,0,0)+\)
16\(n\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},x,z+\frac{1}{2}\)\(y,\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x},\bar{z}+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(x+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},\bar{x},z\)\(y+\frac{1}{2},x+\frac{1}{2},z\)
8\(m\)\(..m\)\(x,\bar{x},z\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},z\)\(x+\frac{1}{2},x,z+\frac{1}{2}\)\(\bar{x},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{x},\bar{z}+\frac{1}{2}\)\(x,x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{x},x,\bar{z}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}\)
8\(l\)\(..2\)\(x,x,\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x,0\)\(x,\bar{x}+\frac{1}{2},0\)
\(\bar{x},\bar{x},\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x},0\)\(\bar{x},x+\frac{1}{2},0\)
8\(k\)\(..2\)\(x,x,0\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(\bar{x}+\frac{1}{2},x,\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x},\bar{x},0\)\(x+\frac{1}{2},x+\frac{1}{2},0\)\(x+\frac{1}{2},\bar{x},\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\frac{1}{2}\)
8\(j\)\(.2.\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{3}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{3}{4}\)
\(\bar{x},\frac{3}{4},\frac{3}{4}\)\(x+\frac{1}{2},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\bar{x},\frac{1}{4}\)\(\frac{3}{4},x+\frac{1}{2},\frac{1}{4}\)
8\(i\)\(.2.\)\(x,\frac{1}{4},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\bar{x},\frac{3}{4},\frac{1}{4}\)\(x+\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\bar{x},\frac{3}{4}\)\(\frac{3}{4},x+\frac{1}{2},\frac{3}{4}\)
8\(h\)\(2..\)\(\frac{1}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{1}{4},z+\frac{1}{2}\)\(\frac{1}{4},\frac{1}{4},\bar{z}+\frac{1}{2}\)\(\frac{1}{4},\frac{1}{4},\bar{z}\)
\(\frac{3}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{3}{4},\bar{z}+\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},z+\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},z\)
4\(g\)\(2.mm\)\(\frac{3}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{3}{4},z+\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\bar{z}+\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\bar{z}\)
4\(f\)\(..2/m\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
4\(e\)\(..2/m\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)
4\(d\)\(2.22\)\(\frac{1}{4},\frac{1}{4},0\)\(\frac{1}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},0\)\(\frac{3}{4},\frac{3}{4},\frac{1}{2}\)
4\(c\)\(222\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)
2\(b\)\(\bar{4}2m\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
2\(a\)\(\bar{4}2m\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)
418135\(P\ 4_2/m\ 2_1/b\ 2/c\)\((0,0,0)+\)
16\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z+\frac{1}{2}\)\(y,\bar{x},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}+\frac{1}{2}\)\(\bar{y},x,\bar{z}+\frac{1}{2}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
8\(h\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,\frac{1}{2}\)\(y,\bar{x},\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},0\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},0\)\(y+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
8\(g\)\(..2\)\(x,x+\frac{1}{2},\frac{1}{4}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{3}{4}\)\(x+\frac{1}{2},\bar{x},\frac{3}{4}\)
\(\bar{x},\bar{x}+\frac{1}{2},\frac{3}{4}\)\(x,x+\frac{1}{2},\frac{3}{4}\)\(x+\frac{1}{2},\bar{x},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{1}{4}\)
8\(f\)\(2..\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}\)\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},z+\frac{1}{2}\)
8\(e\)\(2..\)\(0,0,z\)\(0,0,z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(0,0,\bar{z}\)\(0,0,\bar{z}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
4\(d\)\(2.22\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)
4\(c\)\(2/m..\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},\frac{1}{2}\)
4\(b\)\(\bar{4}..\)\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)
4\(a\)\(2/m..\)\(0,0,0\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
419136\(P\ 4_2/m\ 2_1/n\ 2/m\)\((0,0,0)+\)
16\(k\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},\bar{x},z\)\(y,x,z\)
8\(j\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x,x,\bar{z}\)\(\bar{x},\bar{x},\bar{z}\)
8\(i\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{2}\)\(y,x,0\)\(\bar{y},\bar{x},0\)
8\(h\)\(2..\)\(0,\frac{1}{2},z\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}\)
\(0,\frac{1}{2},\bar{z}\)\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,z+\frac{1}{2}\)\(\frac{1}{2},0,z\)
4\(g\)\(m.2m\)\(x,\bar{x},0\)\(\bar{x},x,0\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
4\(f\)\(m.2m\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
4\(e\)\(2.mm\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}\)
4\(d\)\(\bar{4}..\)\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
4\(c\)\(2/m..\)\(0,\frac{1}{2},0\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},0,0\)
2\(b\)\(m.mm\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(m.mm\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
420137\(P\ 4_2/n\ 2_1/m\ 2/c\)\((0,0,0)+\)
16\(h\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z\)\(\bar{x},y,z\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
8\(g\)\(.m.\)\(0,y,z\)\(0,\bar{y},z\)\(\bar{y}+\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
\(\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,0,\bar{z}\)\(\bar{y},0,\bar{z}\)
8\(f\)\(..2\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x,\bar{x},0\)\(\bar{x},x,0\)
8\(e\)\(\bar{1}\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)
\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
4\(d\)\(2mm.\)\(0,\frac{1}{2},z\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}\)
4\(c\)\(2mm.\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}\)
2\(b\)\(\bar{4}m2\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(\bar{4}m2\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
421137\(P\ 4_2/n\ 2_1/m\ 2/c\)\((0,0,0)+\)
16\(h\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},x,z+\frac{1}{2}\)\(y,\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y},\bar{z}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x},\bar{z}+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(x,\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y,z\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y,x,z+\frac{1}{2}\)
8\(g\)\(.m.\)\(\frac{1}{4},y,z\)\(\frac{1}{4},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},\frac{1}{4},z+\frac{1}{2}\)\(y,\frac{1}{4},z+\frac{1}{2}\)
\(\frac{3}{4},y+\frac{1}{2},\bar{z}\)\(\frac{3}{4},\bar{y},\bar{z}\)\(y+\frac{1}{2},\frac{3}{4},\bar{z}+\frac{1}{2}\)\(\bar{y},\frac{3}{4},\bar{z}+\frac{1}{2}\)
8\(f\)\(..2\)\(x,\bar{x},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},x,\frac{3}{4}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{3}{4}\)
\(\bar{x},x,\frac{3}{4}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},\bar{x},\frac{1}{4}\)\(x,x+\frac{1}{2},\frac{1}{4}\)
8\(e\)\(\bar{1}\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(0,0,\frac{1}{2}\)
4\(d\)\(2mm.\)\(\frac{1}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{1}{4},z+\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{3}{4},\bar{z}+\frac{1}{2}\)
4\(c\)\(2mm.\)\(\frac{3}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{3}{4},z+\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{1}{4},\bar{z}+\frac{1}{2}\)
2\(b\)\(\bar{4}m2\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
2\(a\)\(\bar{4}m2\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)
422138\(P\ 4_2/n\ 2_1/c\ 2/m\)\((0,0,0)+\)
16\(j\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(y+\frac{1}{2},x+\frac{1}{2},z\)
8\(i\)\(..m\)\(x,x+\frac{1}{2},z\)\(\bar{x},\bar{x}+\frac{1}{2},z\)\(\bar{x},x+\frac{1}{2},z+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},x,\bar{z}\)\(x+\frac{1}{2},\bar{x},\bar{z}\)\(x+\frac{1}{2},x,\bar{z}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x},\bar{z}+\frac{1}{2}\)
8\(h\)\(..2\)\(x,x,\frac{3}{4}\)\(\bar{x},\bar{x},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{3}{4}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{3}{4}\)\(x,\bar{x},\frac{1}{4}\)\(\bar{x},x,\frac{1}{4}\)
8\(g\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x},\bar{x},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{3}{4}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{3}{4}\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},x+\frac{1}{2},\frac{1}{4}\)\(x,\bar{x},\frac{3}{4}\)\(\bar{x},x,\frac{3}{4}\)
8\(f\)\(2..\)\(0,0,z\)\(\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)\(0,0,\bar{z}+\frac{1}{2}\)
\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}\)\(0,0,z+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},z\)
4\(e\)\(2.mm\)\(0,\frac{1}{2},z\)\(0,\frac{1}{2},z+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)
4\(d\)\(..2/m\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)
4\(c\)\(..2/m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)
4\(b\)\(\bar{4}..\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)\(0,0,\frac{1}{2}\)
4\(a\)\(2.22\)\(0,0,\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{4}\)\(0,0,\frac{3}{4}\)
423138\(P\ 4_2/n\ 2_1/c\ 2/m\)\((0,0,0)+\)
16\(j\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},x,z+\frac{1}{2}\)\(y,\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x},\bar{z}+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(x,\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y,z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(y,x,z\)
8\(i\)\(..m\)\(x,x,z\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},x,z+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{x},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(\bar{x},\bar{x},\bar{z}\)
8\(h\)\(..2\)\(x,\bar{x},0\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},0\)\(x+\frac{1}{2},x,\frac{1}{2}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(\bar{x},x,0\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(\bar{x}+\frac{1}{2},\bar{x},\frac{1}{2}\)\(x,x+\frac{1}{2},\frac{1}{2}\)
8\(g\)\(..2\)\(x,\bar{x},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},x,0\)\(\bar{x},\bar{x}+\frac{1}{2},0\)
\(\bar{x},x,\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x},0\)\(x,x+\frac{1}{2},0\)
8\(f\)\(2..\)\(\frac{3}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{3}{4},z+\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\bar{z}+\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\bar{z}\)
\(\frac{1}{4},\frac{3}{4},\bar{z}\)\(\frac{3}{4},\frac{1}{4},\bar{z}+\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},z+\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},z\)
4\(e\)\(2.mm\)\(\frac{1}{4},\frac{1}{4},z\)\(\frac{1}{4},\frac{1}{4},z+\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\bar{z}+\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\bar{z}\)
4\(d\)\(..2/m\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
4\(c\)\(..2/m\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)
4\(b\)\(\bar{4}..\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)
4\(a\)\(2.22\)\(\frac{3}{4},\frac{1}{4},0\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},0\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)
424139\(I\ 4/m\ 2/m\ 2/m\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
32\(o\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z\)\(\bar{x},y,z\)\(\bar{y},\bar{x},z\)\(y,x,z\)
16\(n\)\(.m.\)\(0,y,z\)\(0,\bar{y},z\)\(\bar{y},0,z\)\(y,0,z\)
\(0,y,\bar{z}\)\(0,\bar{y},\bar{z}\)\(y,0,\bar{z}\)\(\bar{y},0,\bar{z}\)
16\(m\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,z\)\(x,\bar{x},z\)
\(\bar{x},x,\bar{z}\)\(x,\bar{x},\bar{z}\)\(x,x,\bar{z}\)\(\bar{x},\bar{x},\bar{z}\)
16\(l\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,0\)\(y,\bar{x},0\)
\(\bar{x},y,0\)\(x,\bar{y},0\)\(y,x,0\)\(\bar{y},\bar{x},0\)
16\(k\)\(..2\)\(x,x+\frac{1}{2},\frac{1}{4}\)\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{1}{4}\)\(x+\frac{1}{2},\bar{x},\frac{1}{4}\)
\(\bar{x},\bar{x}+\frac{1}{2},\frac{3}{4}\)\(x,x+\frac{1}{2},\frac{3}{4}\)\(x+\frac{1}{2},\bar{x},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},x,\frac{3}{4}\)
8\(j\)\(m2m.\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
8\(i\)\(m2m.\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
8\(h\)\(m.2m\)\(x,x,0\)\(\bar{x},\bar{x},0\)\(\bar{x},x,0\)\(x,\bar{x},0\)
8\(g\)\(2mm.\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},\bar{z}\)\(\frac{1}{2},0,\bar{z}\)
8\(f\)\(..2/m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)
4\(e\)\(4mm\)\(0,0,z\)\(0,0,\bar{z}\)
4\(d\)\(\bar{4}m2\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)
4\(c\)\(mmm.\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
2\(b\)\(4/mmm\)\(0,0,\frac{1}{2}\)
2\(a\)\(4/mmm\)\(0,0,0\)
425140\(I\ 4/m\ 2/c\ 2/m\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
32\(m\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{y},x,z\)\(y,\bar{x},z\)
\(\bar{x},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y},\bar{z}+\frac{1}{2}\)\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z+\frac{1}{2}\)\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y,x,z+\frac{1}{2}\)
16\(l\)\(..m\)\(x,x+\frac{1}{2},z\)\(\bar{x},\bar{x}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},x,z\)\(x+\frac{1}{2},\bar{x},z\)
\(\bar{x},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},x,\bar{z}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x},\bar{z}+\frac{1}{2}\)
16\(k\)\(m..\)\(x,y,0\)\(\bar{x},\bar{y},0\)\(\bar{y},x,0\)\(y,\bar{x},0\)
\(\bar{x},y,\frac{1}{2}\)\(x,\bar{y},\frac{1}{2}\)\(y,x,\frac{1}{2}\)\(\bar{y},\bar{x},\frac{1}{2}\)
16\(j\)\(.2.\)\(x,0,\frac{1}{4}\)\(\bar{x},0,\frac{1}{4}\)\(0,x,\frac{1}{4}\)\(0,\bar{x},\frac{1}{4}\)
\(\bar{x},0,\frac{3}{4}\)\(x,0,\frac{3}{4}\)\(0,\bar{x},\frac{3}{4}\)\(0,x,\frac{3}{4}\)
16\(i\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x},\bar{x},\frac{1}{4}\)\(\bar{x},x,\frac{1}{4}\)\(x,\bar{x},\frac{1}{4}\)
\(\bar{x},\bar{x},\frac{3}{4}\)\(x,x,\frac{3}{4}\)\(x,\bar{x},\frac{3}{4}\)\(\bar{x},x,\frac{3}{4}\)
8\(h\)\(m.2m\)\(x,x+\frac{1}{2},0\)\(\bar{x},\bar{x}+\frac{1}{2},0\)\(\bar{x}+\frac{1}{2},x,0\)\(x+\frac{1}{2},\bar{x},0\)
8\(g\)\(2.mm\)\(0,\frac{1}{2},z\)\(\frac{1}{2},0,z\)\(0,\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{2}\)
8\(f\)\(4..\)\(0,0,z\)\(0,0,\bar{z}+\frac{1}{2}\)\(0,0,\bar{z}\)\(0,0,z+\frac{1}{2}\)
8\(e\)\(..2/m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)
4\(d\)\(m.mm\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
4\(c\)\(4/m..\)\(0,0,0\)\(0,0,\frac{1}{2}\)
4\(b\)\(\bar{4}2m\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)
4\(a\)\(422\)\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
426141\(I\ 4_1/a\ 2/m\ 2/d\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
32\(i\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},\bar{x},z+\frac{3}{4}\)
\(\bar{x}+\frac{1}{2},y,\bar{z}+\frac{3}{4}\)\(x,\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{4}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}\)
\(\bar{x},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{4}\)\(x+\frac{1}{2},y,\bar{z}+\frac{3}{4}\)\(y,\bar{x},\bar{z}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x},y,z\)\(\bar{y}+\frac{1}{2},\bar{x},z+\frac{3}{4}\)\(y,x+\frac{1}{2},z+\frac{1}{4}\)
16\(h\)\(.m.\)\(0,y,z\)\(\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},0,z+\frac{3}{4}\)
\(\frac{1}{2},y,\bar{z}+\frac{3}{4}\)\(0,\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{4}\)\(y+\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y},0,\bar{z}\)
16\(g\)\(..2\)\(x,x,0\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},\bar{x},\frac{3}{4}\)
\(\bar{x},\bar{x}+\frac{1}{2},\frac{1}{4}\)\(x+\frac{1}{2},x,\frac{3}{4}\)\(x,\bar{x},0\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)
16\(f\)\(.2.\)\(x,\frac{1}{4},\frac{1}{8}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{5}{8}\)\(\frac{3}{4},x+\frac{1}{2},\frac{3}{8}\)\(\frac{3}{4},\bar{x},\frac{7}{8}\)
\(\bar{x},\frac{1}{4},\frac{1}{8}\)\(x+\frac{1}{2},\frac{1}{4},\frac{5}{8}\)\(\frac{1}{4},\bar{x},\frac{7}{8}\)\(\frac{1}{4},x+\frac{1}{2},\frac{3}{8}\)
8\(e\)\(2mm.\)\(0,0,z\)\(0,\frac{1}{2},z+\frac{1}{4}\)\(\frac{1}{2},0,\bar{z}+\frac{3}{4}\)\(\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)
8\(d\)\(.2/m.\)\(0,\frac{1}{4},\frac{5}{8}\)\(\frac{1}{2},\frac{1}{4},\frac{1}{8}\)\(\frac{3}{4},\frac{1}{2},\frac{7}{8}\)\(\frac{3}{4},0,\frac{3}{8}\)
8\(c\)\(.2/m.\)\(0,\frac{1}{4},\frac{1}{8}\)\(\frac{1}{2},\frac{1}{4},\frac{5}{8}\)\(\frac{3}{4},\frac{1}{2},\frac{3}{8}\)\(\frac{3}{4},0,\frac{7}{8}\)
4\(b\)\(\bar{4}m2\)\(0,0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{3}{4}\)
4\(a\)\(\bar{4}m2\)\(0,0,0\)\(0,\frac{1}{2},\frac{1}{4}\)
427141\(I\ 4_1/a\ 2/m\ 2/d\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
32\(i\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{4},x+\frac{3}{4},z+\frac{1}{4}\)\(y+\frac{1}{4},\bar{x}+\frac{1}{4},z+\frac{3}{4}\)
\(\bar{x}+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y},\bar{z}\)\(y+\frac{1}{4},x+\frac{3}{4},\bar{z}+\frac{1}{4}\)\(\bar{y}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(y+\frac{3}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4}\)\(\bar{y}+\frac{3}{4},x+\frac{3}{4},\bar{z}+\frac{1}{4}\)
\(x+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y,z\)\(\bar{y}+\frac{3}{4},\bar{x}+\frac{1}{4},z+\frac{3}{4}\)\(y+\frac{3}{4},x+\frac{3}{4},z+\frac{1}{4}\)
16\(h\)\(.m.\)\(0,y,z\)\(\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{4},\frac{3}{4},z+\frac{1}{4}\)\(y+\frac{1}{4},\frac{1}{4},z+\frac{3}{4}\)
\(\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(0,\bar{y},\bar{z}\)\(y+\frac{1}{4},\frac{3}{4},\bar{z}+\frac{1}{4}\)\(\bar{y}+\frac{1}{4},\frac{1}{4},\bar{z}+\frac{3}{4}\)
16\(g\)\(..2\)\(x,x+\frac{1}{4},\frac{7}{8}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{3}{4},\frac{3}{8}\)\(\bar{x},x+\frac{3}{4},\frac{1}{8}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{4},\frac{5}{8}\)
\(\bar{x},\bar{x}+\frac{3}{4},\frac{1}{8}\)\(x+\frac{1}{2},x+\frac{1}{4},\frac{5}{8}\)\(x,\bar{x}+\frac{1}{4},\frac{7}{8}\)\(\bar{x}+\frac{1}{2},x+\frac{3}{4},\frac{3}{8}\)
16\(f\)\(.2.\)\(x,0,0\)\(\bar{x}+\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{4},x+\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{4},\frac{3}{4}\)
\(\bar{x},0,0\)\(x+\frac{1}{2},0,\frac{1}{2}\)\(\frac{3}{4},\bar{x}+\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},x+\frac{3}{4},\frac{1}{4}\)
8\(e\)\(2mm.\)\(0,\frac{1}{4},z\)\(0,\frac{3}{4},z+\frac{1}{4}\)\(\frac{1}{2},\frac{1}{4},\bar{z}+\frac{1}{2}\)\(\frac{1}{2},\frac{3}{4},\bar{z}+\frac{1}{4}\)
8\(d\)\(.2/m.\)\(0,0,\frac{1}{2}\)\(\frac{1}{2},0,0\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)
8\(c\)\(.2/m.\)\(0,0,0\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)
4\(b\)\(\bar{4}m2\)\(0,\frac{1}{4},\frac{3}{8}\)\(0,\frac{3}{4},\frac{5}{8}\)
4\(a\)\(\bar{4}m2\)\(0,\frac{3}{4},\frac{1}{8}\)\(\frac{1}{2},\frac{3}{4},\frac{3}{8}\)
428142\(I\ 4_1/a\ 2/c\ 2/d\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
32\(g\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},z+\frac{1}{4}\)\(y+\frac{1}{2},\bar{x},z+\frac{3}{4}\)
\(\bar{x}+\frac{1}{2},y,\bar{z}+\frac{1}{4}\)\(x,\bar{y}+\frac{1}{2},\bar{z}+\frac{3}{4}\)\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(\bar{y},\bar{x},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{4}\)\(x+\frac{1}{2},y,\bar{z}+\frac{3}{4}\)\(y,\bar{x},\bar{z}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x},y,z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x},z+\frac{1}{4}\)\(y,x+\frac{1}{2},z+\frac{3}{4}\)
16\(f\)\(..2\)\(x,x,\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{3}{4}\)\(\bar{x},x+\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\bar{x},0\)
\(\bar{x},\bar{x}+\frac{1}{2},0\)\(x+\frac{1}{2},x,\frac{1}{2}\)\(x,\bar{x},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{4}\)
16\(e\)\(.2.\)\(\frac{1}{4},y,\frac{1}{8}\)\(\frac{1}{4},\bar{y}+\frac{1}{2},\frac{5}{8}\)\(\bar{y},\frac{3}{4},\frac{3}{8}\)\(y+\frac{1}{2},\frac{3}{4},\frac{7}{8}\)
\(\frac{3}{4},\bar{y}+\frac{1}{2},\frac{1}{8}\)\(\frac{3}{4},y,\frac{5}{8}\)\(y,\frac{3}{4},\frac{7}{8}\)\(\bar{y}+\frac{1}{2},\frac{3}{4},\frac{3}{8}\)
16\(d\)\(2..\)\(0,0,z\)\(0,\frac{1}{2},z+\frac{1}{4}\)\(\frac{1}{2},0,\bar{z}+\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\bar{z}\)
\(0,\frac{1}{2},\bar{z}+\frac{1}{4}\)\(0,0,\bar{z}\)\(\frac{1}{2},\frac{1}{2},z\)\(\frac{1}{2},0,z+\frac{1}{4}\)
16\(c\)\(\bar{1}\)\(0,\frac{1}{4},\frac{1}{8}\)\(\frac{1}{2},\frac{1}{4},\frac{5}{8}\)\(\frac{3}{4},\frac{1}{2},\frac{3}{8}\)\(\frac{3}{4},0,\frac{7}{8}\)
\(\frac{1}{2},\frac{1}{4},\frac{1}{8}\)\(0,\frac{1}{4},\frac{5}{8}\)\(\frac{3}{4},\frac{1}{2},\frac{7}{8}\)\(\frac{3}{4},0,\frac{3}{8}\)
8\(b\)\(2.22\)\(0,0,\frac{1}{4}\)\(0,\frac{1}{2},\frac{1}{2}\)\(0,\frac{1}{2},0\)\(0,0,\frac{3}{4}\)
8\(a\)\(\bar{4}..\)\(0,0,0\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},0\)
429142\(I\ 4_1/a\ 2/c\ 2/d\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
32\(g\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{4},x+\frac{3}{4},z+\frac{1}{4}\)\(y+\frac{1}{4},\bar{x}+\frac{1}{4},z+\frac{3}{4}\)
\(\bar{x}+\frac{1}{2},y,\bar{z}\)\(x,\bar{y},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{4},x+\frac{3}{4},\bar{z}+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(y+\frac{3}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4}\)\(\bar{y}+\frac{3}{4},x+\frac{3}{4},\bar{z}+\frac{1}{4}\)
\(x+\frac{1}{2},\bar{y},z\)\(\bar{x},y,z+\frac{1}{2}\)\(\bar{y}+\frac{3}{4},\bar{x}+\frac{1}{4},z+\frac{1}{4}\)\(y+\frac{3}{4},x+\frac{3}{4},z+\frac{3}{4}\)
16\(f\)\(..2\)\(x,x+\frac{1}{4},\frac{1}{8}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{3}{4},\frac{5}{8}\)\(\bar{x},x+\frac{3}{4},\frac{3}{8}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{4},\frac{7}{8}\)
\(\bar{x},\bar{x}+\frac{3}{4},\frac{7}{8}\)\(x+\frac{1}{2},x+\frac{1}{4},\frac{3}{8}\)\(x,\bar{x}+\frac{1}{4},\frac{5}{8}\)\(\bar{x}+\frac{1}{2},x+\frac{3}{4},\frac{1}{8}\)
16\(e\)\(.2.\)\(x,0,\frac{1}{4}\)\(\bar{x}+\frac{1}{2},0,\frac{3}{4}\)\(\frac{1}{4},x+\frac{3}{4},\frac{1}{2}\)\(\frac{1}{4},\bar{x}+\frac{1}{4},0\)
\(\bar{x},0,\frac{3}{4}\)\(x+\frac{1}{2},0,\frac{1}{4}\)\(\frac{3}{4},\bar{x}+\frac{1}{4},\frac{1}{2}\)\(\frac{3}{4},x+\frac{3}{4},0\)
16\(d\)\(2..\)\(0,\frac{1}{4},z\)\(0,\frac{3}{4},z+\frac{1}{4}\)\(\frac{1}{2},\frac{1}{4},\bar{z}\)\(\frac{1}{2},\frac{3}{4},\bar{z}+\frac{3}{4}\)
\(0,\frac{3}{4},\bar{z}\)\(0,\frac{1}{4},\bar{z}+\frac{3}{4}\)\(\frac{1}{2},\frac{3}{4},z\)\(\frac{1}{2},\frac{1}{4},z+\frac{1}{4}\)
16\(c\)\(\bar{1}\)\(0,0,0\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)
\(\frac{1}{2},0,0\)\(0,0,\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)
8\(b\)\(2.22\)\(0,\frac{1}{4},\frac{1}{8}\)\(0,\frac{3}{4},\frac{3}{8}\)\(0,\frac{3}{4},\frac{7}{8}\)\(0,\frac{1}{4},\frac{5}{8}\)
8\(a\)\(\bar{4}..\)\(0,\frac{1}{4},\frac{3}{8}\)\(0,\frac{3}{4},\frac{5}{8}\)\(\frac{1}{2},\frac{1}{4},\frac{5}{8}\)\(\frac{1}{2},\frac{3}{4},\frac{3}{8}\)