This page is also available in English.

Last update:

  • Serial No.: Serial number (1~530)
  • ITA No.: Number listed on the International Tables for Crystallography, Vol A. (1~230)
  • SG symbol: Space group symbol (HM full notation)
  • M: Multiplicity
  • W: Wyckoff Letter
  • SS: Site Symmetry
  • Position: Equivalent position
Serial No. ITA No. SG symbolMWSSPosition
489195\(P\ 2\ 3\)\((0,0,0)+\)
12\(j\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
6\(i\)\(2..\)\(x,\frac{1}{2},\frac{1}{2}\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x,\frac{1}{2}\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
\(\frac{1}{2},\frac{1}{2},x\)\(\frac{1}{2},\frac{1}{2},\bar{x}\)
6\(h\)\(2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)
6\(g\)\(2..\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)
6\(f\)\(2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
4\(e\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
3\(d\)\(222..\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)\(0,0,\frac{1}{2}\)
3\(c\)\(222..\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
1\(b\)\(23\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(a\)\(23\)\(0,0,0\)
490196\(F\ 2\ 3\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
48\(h\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
24\(g\)\(2..\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x},\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},x\)\(\frac{3}{4},\frac{1}{4},\bar{x}\)
24\(f\)\(2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
16\(e\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
4\(d\)\(23\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
4\(c\)\(23\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)
4\(b\)\(23\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
4\(a\)\(23\)\(0,0,0\)
491197\(I\ 2\ 3\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
24\(f\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
12\(e\)\(2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)
12\(d\)\(2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
8\(c\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
6\(b\)\(222..\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(23\)\(0,0,0\)
492198\(P\ 2_1\ 3 \) \((0,0,0)+\)
12\(b\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}\)\(\bar{z}+\frac{1}{2},\bar{x},y+\frac{1}{2}\)\(\bar{z},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}\)\(\bar{y}+\frac{1}{2},\bar{z},x+\frac{1}{2}\)
4\(a\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}\)
493199\(I\ 2_1\ 3 \) \((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
24\(c\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}\)\(\bar{z}+\frac{1}{2},\bar{x},y+\frac{1}{2}\)\(\bar{z},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}\)\(\bar{y}+\frac{1}{2},\bar{z},x+\frac{1}{2}\)
12\(b\)\(2..\)\(x,0,\frac{1}{4}\)\(\bar{x}+\frac{1}{2},0,\frac{3}{4}\)\(\frac{1}{4},x,0\)\(\frac{3}{4},\bar{x}+\frac{1}{2},0\)
\(0,\frac{1}{4},x\)\(0,\frac{3}{4},\bar{x}+\frac{1}{2}\)
8\(a\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}\)
494200\(P\ 2/m\ \bar{3}\)\((0,0,0)+\)
24\(l\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(x,\bar{y},z\)\(\bar{x},y,z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x,y\)\(z,x,\bar{y}\)\(z,\bar{x},y\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z},x\)\(\bar{y},z,x\)\(y,z,\bar{x}\)
12\(k\)\(m..\)\(\frac{1}{2},y,z\)\(\frac{1}{2},\bar{y},z\)\(\frac{1}{2},y,\bar{z}\)\(\frac{1}{2},\bar{y},\bar{z}\)
\(z,\frac{1}{2},y\)\(z,\frac{1}{2},\bar{y}\)\(\bar{z},\frac{1}{2},y\)\(\bar{z},\frac{1}{2},\bar{y}\)
\(y,z,\frac{1}{2}\)\(\bar{y},z,\frac{1}{2}\)\(y,\bar{z},\frac{1}{2}\)\(\bar{y},\bar{z},\frac{1}{2}\)
12\(j\)\(m..\)\(0,y,z\)\(0,\bar{y},z\)\(0,y,\bar{z}\)\(0,\bar{y},\bar{z}\)
\(z,0,y\)\(z,0,\bar{y}\)\(\bar{z},0,y\)\(\bar{z},0,\bar{y}\)
\(y,z,0\)\(\bar{y},z,0\)\(y,\bar{z},0\)\(\bar{y},\bar{z},0\)
8\(i\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(\bar{x},\bar{x},\bar{x}\)\(x,x,\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
6\(h\)\(mm2..\)\(x,\frac{1}{2},\frac{1}{2}\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x,\frac{1}{2}\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
\(\frac{1}{2},\frac{1}{2},x\)\(\frac{1}{2},\frac{1}{2},\bar{x}\)
6\(g\)\(mm2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)
6\(f\)\(mm2..\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)
6\(e\)\(mm2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
3\(d\)\(mmm..\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)\(0,0,\frac{1}{2}\)
3\(c\)\(mmm..\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
1\(b\)\(m\bar{3}.\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(a\)\(m\bar{3}.\)\(0,0,0\)
495201\(P\ 2/n\ \bar{3}\)\((0,0,0)+\)
24\(h\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},y+\frac{1}{2}\)\(z+\frac{1}{2},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},z+\frac{1}{2},x+\frac{1}{2}\)\(y+\frac{1}{2},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)
12\(g\)\(2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)\(\bar{x}+\frac{1}{2},0,\frac{1}{2}\)\(x+\frac{1}{2},0,\frac{1}{2}\)
\(\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(\frac{1}{2},x+\frac{1}{2},0\)\(0,\frac{1}{2},\bar{x}+\frac{1}{2}\)\(0,\frac{1}{2},x+\frac{1}{2}\)
12\(f\)\(2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},x+\frac{1}{2}\)
8\(e\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)
6\(d\)\(222..\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,0\)
\(0,\frac{1}{2},0\)\(0,0,\frac{1}{2}\)
4\(c\)\(.\bar{3}.\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)
4\(b\)\(.\bar{3}.\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
2\(a\)\(23\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
496201\(P\ 2/n\ \bar{3}\)\((0,0,0)+\)
24\(h\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(z,x,y\)\(z,\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2},y\)\(\bar{z}+\frac{1}{2},x,\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y}+\frac{1}{2},z,\bar{x}+\frac{1}{2}\)\(y,\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2},x\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x+\frac{1}{2},y+\frac{1}{2}\)\(z+\frac{1}{2},x+\frac{1}{2},\bar{y}\)\(z+\frac{1}{2},\bar{x},y+\frac{1}{2}\)
\(\bar{y},\bar{z},\bar{x}\)\(y+\frac{1}{2},\bar{z},x+\frac{1}{2}\)\(\bar{y},z+\frac{1}{2},x+\frac{1}{2}\)\(y+\frac{1}{2},z+\frac{1}{2},\bar{x}\)
12\(g\)\(2..\)\(x,\frac{3}{4},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{3}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{3}{4}\)
\(\frac{3}{4},\frac{1}{4},x\)\(\frac{3}{4},\frac{1}{4},\bar{x}+\frac{1}{2}\)\(\bar{x},\frac{1}{4},\frac{3}{4}\)\(x+\frac{1}{2},\frac{1}{4},\frac{3}{4}\)
\(\frac{3}{4},\bar{x},\frac{1}{4}\)\(\frac{3}{4},x+\frac{1}{2},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\bar{x}\)\(\frac{1}{4},\frac{3}{4},x+\frac{1}{2}\)
12\(f\)\(2..\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\frac{1}{4},\frac{1}{4},x\)\(\frac{1}{4},\frac{1}{4},\bar{x}+\frac{1}{2}\)\(\bar{x},\frac{3}{4},\frac{3}{4}\)\(x+\frac{1}{2},\frac{3}{4},\frac{3}{4}\)
\(\frac{3}{4},\bar{x},\frac{3}{4}\)\(\frac{3}{4},x+\frac{1}{2},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\bar{x}\)\(\frac{3}{4},\frac{3}{4},x+\frac{1}{2}\)
8\(e\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},x\)\(\bar{x}+\frac{1}{2},x,\bar{x}+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
\(\bar{x},\bar{x},\bar{x}\)\(x+\frac{1}{2},x+\frac{1}{2},\bar{x}\)\(x+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},x+\frac{1}{2}\)
6\(d\)\(222..\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)
\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)
4\(c\)\(.\bar{3}.\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(0,0,\frac{1}{2}\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
4\(b\)\(.\bar{3}.\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
2\(a\)\(23\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
497202\(F\ 2/m\ \bar{3}\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
96\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(x,\bar{y},z\)\(\bar{x},y,z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x,y\)\(z,x,\bar{y}\)\(z,\bar{x},y\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z},x\)\(\bar{y},z,x\)\(y,z,\bar{x}\)
48\(h\)\(m..\)\(0,y,z\)\(0,\bar{y},z\)\(0,y,\bar{z}\)\(0,\bar{y},\bar{z}\)
\(z,0,y\)\(z,0,\bar{y}\)\(\bar{z},0,y\)\(\bar{z},0,\bar{y}\)
\(y,z,0\)\(\bar{y},z,0\)\(y,\bar{z},0\)\(\bar{y},\bar{z},0\)
48\(g\)\(2..\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x},\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},x\)\(\frac{3}{4},\frac{1}{4},\bar{x}\)\(\bar{x},\frac{3}{4},\frac{3}{4}\)\(x,\frac{1}{4},\frac{3}{4}\)
\(\frac{3}{4},\bar{x},\frac{3}{4}\)\(\frac{3}{4},x,\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\bar{x}\)\(\frac{1}{4},\frac{3}{4},x\)
32\(f\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(\bar{x},\bar{x},\bar{x}\)\(x,x,\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
24\(e\)\(mm2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
24\(d\)\(2/m..\)\(0,\frac{1}{4},\frac{1}{4}\)\(0,\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},0,\frac{1}{4}\)\(\frac{1}{4},0,\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)
8\(c\)\(23\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
4\(b\)\(m\bar{3}.\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
4\(a\)\(m\bar{3}.\)\(0,0,0\)
498203\(F\ 2/d\ \bar{3}\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
96\(g\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(\bar{x}+\frac{1}{4},\bar{y}+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(x+\frac{1}{4},y+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{y}+\frac{1}{4},z+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},y+\frac{1}{4},z+\frac{1}{4}\)
\(\bar{z}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(\bar{z}+\frac{1}{4},x+\frac{1}{4},y+\frac{1}{4}\)\(z+\frac{1}{4},x+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(z+\frac{1}{4},\bar{x}+\frac{1}{4},y+\frac{1}{4}\)
\(\bar{y}+\frac{1}{4},\bar{z}+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(y+\frac{1}{4},\bar{z}+\frac{1}{4},x+\frac{1}{4}\)\(\bar{y}+\frac{1}{4},z+\frac{1}{4},x+\frac{1}{4}\)\(y+\frac{1}{4},z+\frac{1}{4},\bar{x}+\frac{1}{4}\)
48\(f\)\(2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)\(\bar{x}+\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(x+\frac{1}{4},\frac{1}{4},\frac{1}{4}\)
\(\frac{1}{4},\bar{x}+\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},x+\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\bar{x}+\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},x+\frac{1}{4}\)
32\(e\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(x+\frac{1}{4},x+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{x}+\frac{1}{4},x+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},x+\frac{1}{4},x+\frac{1}{4}\)
16\(d\)\(.\bar{3}.\)\(\frac{5}{8},\frac{5}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{3}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{5}{8},\frac{3}{8}\)\(\frac{5}{8},\frac{3}{8},\frac{3}{8}\)
16\(c\)\(.\bar{3}.\)\(\frac{1}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{7}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{1}{8},\frac{7}{8}\)\(\frac{1}{8},\frac{7}{8},\frac{7}{8}\)
8\(b\)\(23\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
8\(a\)\(23\)\(0,0,0\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)
499203\(F\ 2/d\ \bar{3}\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
96\(g\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{4},\bar{y}+\frac{1}{4},z\)\(\bar{x}+\frac{1}{4},y,\bar{z}+\frac{1}{4}\)\(x,\bar{y}+\frac{1}{4},\bar{z}+\frac{1}{4}\)
\(z,x,y\)\(z,\bar{x}+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(\bar{z}+\frac{1}{4},\bar{x}+\frac{1}{4},y\)\(\bar{z}+\frac{1}{4},x,\bar{y}+\frac{1}{4}\)
\(y,z,x\)\(\bar{y}+\frac{1}{4},z,\bar{x}+\frac{1}{4}\)\(y,\bar{z}+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(\bar{y}+\frac{1}{4},\bar{z}+\frac{1}{4},x\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{3}{4},y+\frac{3}{4},\bar{z}\)\(x+\frac{3}{4},\bar{y},z+\frac{3}{4}\)\(\bar{x},y+\frac{3}{4},z+\frac{3}{4}\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x+\frac{3}{4},y+\frac{3}{4}\)\(z+\frac{3}{4},x+\frac{3}{4},\bar{y}\)\(z+\frac{3}{4},\bar{x},y+\frac{3}{4}\)
\(\bar{y},\bar{z},\bar{x}\)\(y+\frac{3}{4},\bar{z},x+\frac{3}{4}\)\(\bar{y},z+\frac{3}{4},x+\frac{3}{4}\)\(y+\frac{3}{4},z+\frac{3}{4},\bar{x}\)
48\(f\)\(2..\)\(x,\frac{1}{8},\frac{1}{8}\)\(\bar{x}+\frac{1}{4},\frac{1}{8},\frac{1}{8}\)\(\frac{1}{8},x,\frac{1}{8}\)\(\frac{1}{8},\bar{x}+\frac{1}{4},\frac{1}{8}\)
\(\frac{1}{8},\frac{1}{8},x\)\(\frac{1}{8},\frac{1}{8},\bar{x}+\frac{1}{4}\)\(\bar{x},\frac{7}{8},\frac{7}{8}\)\(x+\frac{3}{4},\frac{7}{8},\frac{7}{8}\)
\(\frac{7}{8},\bar{x},\frac{7}{8}\)\(\frac{7}{8},x+\frac{3}{4},\frac{7}{8}\)\(\frac{7}{8},\frac{7}{8},\bar{x}\)\(\frac{7}{8},\frac{7}{8},x+\frac{3}{4}\)
32\(e\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4},x\)\(\bar{x}+\frac{1}{4},x,\bar{x}+\frac{1}{4}\)\(x,\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4}\)
\(\bar{x},\bar{x},\bar{x}\)\(x+\frac{3}{4},x+\frac{3}{4},\bar{x}\)\(x+\frac{3}{4},\bar{x},x+\frac{3}{4}\)\(\bar{x},x+\frac{3}{4},x+\frac{3}{4}\)
16\(d\)\(.\bar{3}.\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},\frac{3}{4},\frac{3}{4}\)
16\(c\)\(.\bar{3}.\)\(0,0,0\)\(\frac{1}{4},\frac{1}{4},0\)\(\frac{1}{4},0,\frac{1}{4}\)\(0,\frac{1}{4},\frac{1}{4}\)
8\(b\)\(23\)\(\frac{5}{8},\frac{5}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{3}{8},\frac{3}{8}\)
8\(a\)\(23\)\(\frac{1}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{7}{8},\frac{7}{8}\)
500204\(I\ 2/m\ \bar{3}\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
48\(h\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(x,\bar{y},z\)\(\bar{x},y,z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x,y\)\(z,x,\bar{y}\)\(z,\bar{x},y\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z},x\)\(\bar{y},z,x\)\(y,z,\bar{x}\)
24\(g\)\(m..\)\(0,y,z\)\(0,\bar{y},z\)\(0,y,\bar{z}\)\(0,\bar{y},\bar{z}\)
\(z,0,y\)\(z,0,\bar{y}\)\(\bar{z},0,y\)\(\bar{z},0,\bar{y}\)
\(y,z,0\)\(\bar{y},z,0\)\(y,\bar{z},0\)\(\bar{y},\bar{z},0\)
16\(f\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(\bar{x},\bar{x},\bar{x}\)\(x,x,\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
12\(e\)\(mm2..\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)
12\(d\)\(mm2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
8\(c\)\(.\bar{3}.\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
6\(b\)\(mmm..\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(m\bar{3}.\)\(0,0,0\)
501205\(P\ 2_1/a\ \bar{3} \) \((0,0,0)+\)
24\(d\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}\)\(\bar{z}+\frac{1}{2},\bar{x},y+\frac{1}{2}\)\(\bar{z},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}\)\(\bar{y}+\frac{1}{2},\bar{z},x+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},y\)\(z+\frac{1}{2},x,\bar{y}+\frac{1}{2}\)\(z,\bar{x}+\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},z+\frac{1}{2},x\)\(y+\frac{1}{2},z,\bar{x}+\frac{1}{2}\)
8\(c\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}\)
\(\bar{x},\bar{x},\bar{x}\)\(x+\frac{1}{2},x,\bar{x}+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},x\)
4\(b\)\(.\bar{3}.\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)\(0,0,\frac{1}{2}\)
4\(a\)\(.\bar{3}.\)\(0,0,0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
502206\(I\ 2_1/a\ \bar{3} \) \((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
48\(e\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}\)\(\bar{z}+\frac{1}{2},\bar{x},y+\frac{1}{2}\)\(\bar{z},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}\)\(\bar{y}+\frac{1}{2},\bar{z},x+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},y\)\(z+\frac{1}{2},x,\bar{y}+\frac{1}{2}\)\(z,\bar{x}+\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},z+\frac{1}{2},x\)\(y+\frac{1}{2},z,\bar{x}+\frac{1}{2}\)
24\(d\)\(2..\)\(x,0,\frac{1}{4}\)\(\bar{x}+\frac{1}{2},0,\frac{3}{4}\)\(\frac{1}{4},x,0\)\(\frac{3}{4},\bar{x}+\frac{1}{2},0\)
\(0,\frac{1}{4},x\)\(0,\frac{3}{4},\bar{x}+\frac{1}{2}\)\(\bar{x},0,\frac{3}{4}\)\(x+\frac{1}{2},0,\frac{1}{4}\)
\(\frac{3}{4},\bar{x},0\)\(\frac{1}{4},x+\frac{1}{2},0\)\(0,\frac{3}{4},\bar{x}\)\(0,\frac{1}{4},x+\frac{1}{2}\)
16\(c\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}\)
\(\bar{x},\bar{x},\bar{x}\)\(x+\frac{1}{2},x,\bar{x}+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},x\)
8\(b\)\(.\bar{3}.\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)
8\(a\)\(.\bar{3}.\)\(0,0,0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
503207\(P\ 4\ 3\ 2\)\((0,0,0)+\)
24\(k\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)\(y,\bar{x},z\)\(\bar{y},x,z\)
\(x,z,\bar{y}\)\(\bar{x},z,y\)\(\bar{x},\bar{z},\bar{y}\)\(x,\bar{z},y\)
\(z,y,\bar{x}\)\(z,\bar{y},x\)\(\bar{z},y,x\)\(\bar{z},\bar{y},\bar{x}\)
12\(j\)\(..2\)\(\frac{1}{2},y,y\)\(\frac{1}{2},\bar{y},y\)\(\frac{1}{2},y,\bar{y}\)\(\frac{1}{2},\bar{y},\bar{y}\)
\(y,\frac{1}{2},y\)\(y,\frac{1}{2},\bar{y}\)\(\bar{y},\frac{1}{2},y\)\(\bar{y},\frac{1}{2},\bar{y}\)
\(y,y,\frac{1}{2}\)\(\bar{y},y,\frac{1}{2}\)\(y,\bar{y},\frac{1}{2}\)\(\bar{y},\bar{y},\frac{1}{2}\)
12\(i\)\(..2\)\(0,y,y\)\(0,\bar{y},y\)\(0,y,\bar{y}\)\(0,\bar{y},\bar{y}\)
\(y,0,y\)\(y,0,\bar{y}\)\(\bar{y},0,y\)\(\bar{y},0,\bar{y}\)
\(y,y,0\)\(\bar{y},y,0\)\(y,\bar{y},0\)\(\bar{y},\bar{y},0\)
12\(h\)\(2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,\frac{1}{2},\bar{x}\)\(0,\frac{1}{2},x\)
8\(g\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x,x,\bar{x}\)\(\bar{x},\bar{x},\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
6\(f\)\(4..\)\(x,\frac{1}{2},\frac{1}{2}\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x,\frac{1}{2}\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
\(\frac{1}{2},\frac{1}{2},x\)\(\frac{1}{2},\frac{1}{2},\bar{x}\)
6\(e\)\(4..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
3\(d\)\(42.2\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)\(0,0,\frac{1}{2}\)
3\(c\)\(42.2\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
1\(b\)\(432\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(a\)\(432\)\(0,0,0\)
504208\(P\ 4_2\ 3\ 2\)\((0,0,0)+\)
24\(m\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
\(x+\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)
\(z+\frac{1}{2},y+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
12\(l\)\(..2\)\(\frac{1}{4},y,y+\frac{1}{2}\)\(\frac{3}{4},\bar{y},y+\frac{1}{2}\)\(\frac{3}{4},y,\bar{y}+\frac{1}{2}\)\(\frac{1}{4},\bar{y},\bar{y}+\frac{1}{2}\)
\(y+\frac{1}{2},\frac{1}{4},y\)\(y+\frac{1}{2},\frac{3}{4},\bar{y}\)\(\bar{y}+\frac{1}{2},\frac{3}{4},y\)\(\bar{y}+\frac{1}{2},\frac{1}{4},\bar{y}\)
\(y,y+\frac{1}{2},\frac{1}{4}\)\(\bar{y},y+\frac{1}{2},\frac{3}{4}\)\(y,\bar{y}+\frac{1}{2},\frac{3}{4}\)\(\bar{y},\bar{y}+\frac{1}{2},\frac{1}{4}\)
12\(k\)\(..2\)\(\frac{1}{4},y,\bar{y}+\frac{1}{2}\)\(\frac{3}{4},\bar{y},\bar{y}+\frac{1}{2}\)\(\frac{3}{4},y,y+\frac{1}{2}\)\(\frac{1}{4},\bar{y},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\frac{1}{4},y\)\(\bar{y}+\frac{1}{2},\frac{3}{4},\bar{y}\)\(y+\frac{1}{2},\frac{3}{4},y\)\(y+\frac{1}{2},\frac{1}{4},\bar{y}\)
\(y,\bar{y}+\frac{1}{2},\frac{1}{4}\)\(\bar{y},\bar{y}+\frac{1}{2},\frac{3}{4}\)\(y,y+\frac{1}{2},\frac{3}{4}\)\(\bar{y},y+\frac{1}{2},\frac{1}{4}\)
12\(j\)\(2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)\(0,x+\frac{1}{2},\frac{1}{2}\)\(0,\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(x+\frac{1}{2},\frac{1}{2},0\)\(\bar{x}+\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,\bar{x}+\frac{1}{2}\)\(\frac{1}{2},0,x+\frac{1}{2}\)
12\(i\)\(2..\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)\(\frac{1}{2},x+\frac{1}{2},0\)\(\frac{1}{2},\bar{x}+\frac{1}{2},0\)
\(x+\frac{1}{2},0,\frac{1}{2}\)\(\bar{x}+\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\bar{x}+\frac{1}{2}\)\(0,\frac{1}{2},x+\frac{1}{2}\)
12\(h\)\(2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},x+\frac{1}{2}\)
8\(g\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)
6\(f\)\(2.22\)\(\frac{1}{4},\frac{1}{2},0\)\(\frac{3}{4},\frac{1}{2},0\)\(0,\frac{1}{4},\frac{1}{2}\)\(0,\frac{3}{4},\frac{1}{2}\)
\(\frac{1}{2},0,\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
6\(e\)\(2.22\)\(\frac{1}{4},0,\frac{1}{2}\)\(\frac{3}{4},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{4},0\)\(\frac{1}{2},\frac{3}{4},0\)
\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)
6\(d\)\(222..\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)\(0,\frac{1}{2},0\)
\(\frac{1}{2},0,0\)\(0,0,\frac{1}{2}\)
4\(c\)\(0.32\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)
4\(b\)\(0.32\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
2\(a\)\(23\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
505209\(F\ 4\ 3\ 2\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
96\(j\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)\(y,\bar{x},z\)\(\bar{y},x,z\)
\(x,z,\bar{y}\)\(\bar{x},z,y\)\(\bar{x},\bar{z},\bar{y}\)\(x,\bar{z},y\)
\(z,y,\bar{x}\)\(z,\bar{y},x\)\(\bar{z},y,x\)\(\bar{z},\bar{y},\bar{x}\)
48\(i\)\(2..\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x},\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},x\)\(\frac{3}{4},\frac{1}{4},\bar{x}\)\(\frac{1}{4},x,\frac{3}{4}\)\(\frac{3}{4},\bar{x},\frac{3}{4}\)
\(x,\frac{1}{4},\frac{3}{4}\)\(\bar{x},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\bar{x}\)\(\frac{1}{4},\frac{3}{4},x\)
48\(h\)\(..2\)\(\frac{1}{2},y,y\)\(\frac{1}{2},\bar{y},y\)\(\frac{1}{2},y,\bar{y}\)\(\frac{1}{2},\bar{y},\bar{y}\)
\(y,\frac{1}{2},y\)\(y,\frac{1}{2},\bar{y}\)\(\bar{y},\frac{1}{2},y\)\(\bar{y},\frac{1}{2},\bar{y}\)
\(y,y,\frac{1}{2}\)\(\bar{y},y,\frac{1}{2}\)\(y,\bar{y},\frac{1}{2}\)\(\bar{y},\bar{y},\frac{1}{2}\)
48\(g\)\(..2\)\(0,y,y\)\(0,\bar{y},y\)\(0,y,\bar{y}\)\(0,\bar{y},\bar{y}\)
\(y,0,y\)\(y,0,\bar{y}\)\(\bar{y},0,y\)\(\bar{y},0,\bar{y}\)
\(y,y,0\)\(\bar{y},y,0\)\(y,\bar{y},0\)\(\bar{y},\bar{y},0\)
32\(f\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x,x,\bar{x}\)\(\bar{x},\bar{x},\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
24\(e\)\(4..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
24\(d\)\(2.22\)\(0,\frac{1}{4},\frac{1}{4}\)\(0,\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},0,\frac{1}{4}\)\(\frac{1}{4},0,\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)
8\(c\)\(23\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)
4\(b\)\(432\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
4\(a\)\(432\)\(0,0,0\)
506210\(F\ 4_1\ 3\ 2\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
96\(h\)\(x,y,z\)\(\bar{x},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y},\bar{z}+\frac{1}{2}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x},\bar{y}+\frac{1}{2}\)\(\bar{z},\bar{x}+\frac{1}{2},y+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},\bar{y}\)
\(y,z,x\)\(\bar{y}+\frac{1}{2},z+\frac{1}{2},\bar{x}\)\(y+\frac{1}{2},\bar{z},\bar{x}+\frac{1}{2}\)\(\bar{y},\bar{z}+\frac{1}{2},x+\frac{1}{2}\)
\(y+\frac{3}{4},x+\frac{1}{4},\bar{z}+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(y+\frac{1}{4},\bar{x}+\frac{3}{4},z+\frac{3}{4}\)\(\bar{y}+\frac{3}{4},x+\frac{3}{4},z+\frac{1}{4}\)
\(x+\frac{3}{4},z+\frac{1}{4},\bar{y}+\frac{3}{4}\)\(\bar{x}+\frac{3}{4},z+\frac{3}{4},y+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{z}+\frac{3}{4},y+\frac{3}{4}\)
\(z+\frac{3}{4},y+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(z+\frac{1}{4},\bar{y}+\frac{3}{4},x+\frac{3}{4}\)\(\bar{z}+\frac{3}{4},y+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z}+\frac{1}{4},\bar{y}+\frac{1}{4},\bar{x}+\frac{1}{4}\)
48\(g\)\(..2\)\(\frac{1}{8},y,\bar{y}+\frac{1}{4}\)\(\frac{7}{8},\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4}\)\(\frac{3}{8},y+\frac{1}{2},y+\frac{3}{4}\)\(\frac{5}{8},\bar{y},y+\frac{1}{4}\)
\(\bar{y}+\frac{1}{4},\frac{1}{8},y\)\(\bar{y}+\frac{3}{4},\frac{7}{8},\bar{y}+\frac{1}{2}\)\(y+\frac{3}{4},\frac{3}{8},y+\frac{1}{2}\)\(y+\frac{1}{4},\frac{5}{8},\bar{y}\)
\(y,\bar{y}+\frac{1}{4},\frac{1}{8}\)\(\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4},\frac{7}{8}\)\(y+\frac{1}{2},y+\frac{3}{4},\frac{3}{8}\)\(\bar{y},y+\frac{1}{4},\frac{5}{8}\)
48\(f\)\(2..\)\(x,0,0\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(0,x,0\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
\(0,0,x\)\(\frac{1}{2},\frac{1}{2},\bar{x}\)\(\frac{3}{4},x+\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{4},\frac{1}{4}\)
\(x+\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\bar{x}+\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\bar{x}+\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},x+\frac{3}{4}\)
32\(e\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\bar{x}\)\(x+\frac{1}{2},\bar{x},\bar{x}+\frac{1}{2}\)
\(x+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{x}+\frac{3}{4},x+\frac{3}{4}\)\(\bar{x}+\frac{3}{4},x+\frac{3}{4},x+\frac{1}{4}\)
16\(d\)\(0.32\)\(\frac{5}{8},\frac{5}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{7}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{1}{8},\frac{3}{8}\)\(\frac{1}{8},\frac{3}{8},\frac{7}{8}\)
16\(c\)\(0.32\)\(\frac{1}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{3}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{5}{8},\frac{7}{8}\)\(\frac{5}{8},\frac{7}{8},\frac{3}{8}\)
8\(b\)\(23\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)
8\(a\)\(23\)\(0,0,0\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)
507211\(I\ 4\ 3\ 2\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
48\(j\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)\(y,\bar{x},z\)\(\bar{y},x,z\)
\(x,z,\bar{y}\)\(\bar{x},z,y\)\(\bar{x},\bar{z},\bar{y}\)\(x,\bar{z},y\)
\(z,y,\bar{x}\)\(z,\bar{y},x\)\(\bar{z},y,x\)\(\bar{z},\bar{y},\bar{x}\)
24\(i\)\(..2\)\(\frac{1}{4},y,\bar{y}+\frac{1}{2}\)\(\frac{3}{4},\bar{y},\bar{y}+\frac{1}{2}\)\(\frac{3}{4},y,y+\frac{1}{2}\)\(\frac{1}{4},\bar{y},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\frac{1}{4},y\)\(\bar{y}+\frac{1}{2},\frac{3}{4},\bar{y}\)\(y+\frac{1}{2},\frac{3}{4},y\)\(y+\frac{1}{2},\frac{1}{4},\bar{y}\)
\(y,\bar{y}+\frac{1}{2},\frac{1}{4}\)\(\bar{y},\bar{y}+\frac{1}{2},\frac{3}{4}\)\(y,y+\frac{1}{2},\frac{3}{4}\)\(\bar{y},y+\frac{1}{2},\frac{1}{4}\)
24\(h\)\(..2\)\(0,y,y\)\(0,\bar{y},y\)\(0,y,\bar{y}\)\(0,\bar{y},\bar{y}\)
\(y,0,y\)\(y,0,\bar{y}\)\(\bar{y},0,y\)\(\bar{y},0,\bar{y}\)
\(y,y,0\)\(\bar{y},y,0\)\(y,\bar{y},0\)\(\bar{y},\bar{y},0\)
24\(g\)\(2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,\frac{1}{2},\bar{x}\)\(0,\frac{1}{2},x\)
16\(f\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x,x,\bar{x}\)\(\bar{x},\bar{x},\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
12\(e\)\(4..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
12\(d\)\(2.22\)\(\frac{1}{4},\frac{1}{2},0\)\(\frac{3}{4},\frac{1}{2},0\)\(0,\frac{1}{4},\frac{1}{2}\)\(0,\frac{3}{4},\frac{1}{2}\)
\(\frac{1}{2},0,\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
8\(c\)\(0.32\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
6\(b\)\(42.2\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(432\)\(0,0,0\)
508212\(P\ 4_3\ 3\ 2\)\((0,0,0)+\)
24\(e\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}\)\(\bar{z}+\frac{1}{2},\bar{x},y+\frac{1}{2}\)\(\bar{z},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}\)\(\bar{y}+\frac{1}{2},\bar{z},x+\frac{1}{2}\)
\(y+\frac{1}{4},x+\frac{3}{4},\bar{z}+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(y+\frac{3}{4},\bar{x}+\frac{3}{4},z+\frac{1}{4}\)\(\bar{y}+\frac{3}{4},x+\frac{1}{4},z+\frac{3}{4}\)
\(x+\frac{1}{4},z+\frac{3}{4},\bar{y}+\frac{3}{4}\)\(\bar{x}+\frac{3}{4},z+\frac{1}{4},y+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(x+\frac{3}{4},\bar{z}+\frac{3}{4},y+\frac{1}{4}\)
\(z+\frac{1}{4},y+\frac{3}{4},\bar{x}+\frac{3}{4}\)\(z+\frac{3}{4},\bar{y}+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z}+\frac{3}{4},y+\frac{1}{4},x+\frac{3}{4}\)\(\bar{z}+\frac{1}{4},\bar{y}+\frac{1}{4},\bar{x}+\frac{1}{4}\)
12\(d\)\(..2\)\(\frac{1}{8},y,\bar{y}+\frac{1}{4}\)\(\frac{3}{8},\bar{y},\bar{y}+\frac{3}{4}\)\(\frac{7}{8},y+\frac{1}{2},y+\frac{1}{4}\)\(\frac{5}{8},\bar{y}+\frac{1}{2},y+\frac{3}{4}\)
\(\bar{y}+\frac{1}{4},\frac{1}{8},y\)\(\bar{y}+\frac{3}{4},\frac{3}{8},\bar{y}\)\(y+\frac{1}{4},\frac{7}{8},y+\frac{1}{2}\)\(y+\frac{3}{4},\frac{5}{8},\bar{y}+\frac{1}{2}\)
\(y,\bar{y}+\frac{1}{4},\frac{1}{8}\)\(\bar{y},\bar{y}+\frac{3}{4},\frac{3}{8}\)\(y+\frac{1}{2},y+\frac{1}{4},\frac{7}{8}\)\(\bar{y}+\frac{1}{2},y+\frac{3}{4},\frac{5}{8}\)
8\(c\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}\)
\(x+\frac{1}{4},x+\frac{3}{4},\bar{x}+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(x+\frac{3}{4},\bar{x}+\frac{3}{4},x+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},x+\frac{1}{4},x+\frac{3}{4}\)
4\(b\)\(0.32\)\(\frac{5}{8},\frac{5}{8},\frac{5}{8}\)\(\frac{7}{8},\frac{3}{8},\frac{1}{8}\)\(\frac{3}{8},\frac{1}{8},\frac{7}{8}\)\(\frac{1}{8},\frac{7}{8},\frac{3}{8}\)
4\(a\)\(0.32\)\(\frac{1}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{3}{8},\frac{7}{8},\frac{5}{8}\)\(\frac{7}{8},\frac{5}{8},\frac{3}{8}\)\(\frac{5}{8},\frac{3}{8},\frac{7}{8}\)
509213\(P\ 4_1\ 3\ 2\)\((0,0,0)+\)
24\(e\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}\)\(\bar{z}+\frac{1}{2},\bar{x},y+\frac{1}{2}\)\(\bar{z},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}\)\(\bar{y}+\frac{1}{2},\bar{z},x+\frac{1}{2}\)
\(y+\frac{3}{4},x+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(\bar{y}+\frac{3}{4},\bar{x}+\frac{3}{4},\bar{z}+\frac{3}{4}\)\(y+\frac{1}{4},\bar{x}+\frac{1}{4},z+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},x+\frac{3}{4},z+\frac{1}{4}\)
\(x+\frac{3}{4},z+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},z+\frac{3}{4},y+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},\bar{z}+\frac{3}{4},\bar{y}+\frac{3}{4}\)\(x+\frac{1}{4},\bar{z}+\frac{1}{4},y+\frac{3}{4}\)
\(z+\frac{3}{4},y+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(z+\frac{1}{4},\bar{y}+\frac{1}{4},x+\frac{3}{4}\)\(\bar{z}+\frac{1}{4},y+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z}+\frac{3}{4},\bar{y}+\frac{3}{4},\bar{x}+\frac{3}{4}\)
12\(d\)\(..2\)\(\frac{1}{8},y,y+\frac{1}{4}\)\(\frac{3}{8},\bar{y},y+\frac{3}{4}\)\(\frac{7}{8},y+\frac{1}{2},\bar{y}+\frac{1}{4}\)\(\frac{5}{8},\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4}\)
\(y+\frac{1}{4},\frac{1}{8},y\)\(y+\frac{3}{4},\frac{3}{8},\bar{y}\)\(\bar{y}+\frac{1}{4},\frac{7}{8},y+\frac{1}{2}\)\(\bar{y}+\frac{3}{4},\frac{5}{8},\bar{y}+\frac{1}{2}\)
\(y,y+\frac{1}{4},\frac{1}{8}\)\(\bar{y},y+\frac{3}{4},\frac{3}{8}\)\(y+\frac{1}{2},\bar{y}+\frac{1}{4},\frac{7}{8}\)\(\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4},\frac{5}{8}\)
8\(c\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}\)
\(x+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},\bar{x}+\frac{3}{4},\bar{x}+\frac{3}{4}\)\(x+\frac{1}{4},\bar{x}+\frac{1}{4},x+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},x+\frac{3}{4},x+\frac{1}{4}\)
4\(b\)\(0.32\)\(\frac{7}{8},\frac{7}{8},\frac{7}{8}\)\(\frac{5}{8},\frac{1}{8},\frac{3}{8}\)\(\frac{1}{8},\frac{3}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{5}{8},\frac{1}{8}\)
4\(a\)\(0.32\)\(\frac{3}{8},\frac{3}{8},\frac{3}{8}\)\(\frac{1}{8},\frac{5}{8},\frac{7}{8}\)\(\frac{5}{8},\frac{7}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{1}{8},\frac{5}{8}\)
510214\(I\ 4_1\ 3\ 2\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
48\(i\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}\)\(\bar{z}+\frac{1}{2},\bar{x},y+\frac{1}{2}\)\(\bar{z},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}\)\(\bar{y}+\frac{1}{2},\bar{z},x+\frac{1}{2}\)
\(y+\frac{3}{4},x+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(\bar{y}+\frac{3}{4},\bar{x}+\frac{3}{4},\bar{z}+\frac{3}{4}\)\(y+\frac{1}{4},\bar{x}+\frac{1}{4},z+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},x+\frac{3}{4},z+\frac{1}{4}\)
\(x+\frac{3}{4},z+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},z+\frac{3}{4},y+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},\bar{z}+\frac{3}{4},\bar{y}+\frac{3}{4}\)\(x+\frac{1}{4},\bar{z}+\frac{1}{4},y+\frac{3}{4}\)
\(z+\frac{3}{4},y+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(z+\frac{1}{4},\bar{y}+\frac{1}{4},x+\frac{3}{4}\)\(\bar{z}+\frac{1}{4},y+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z}+\frac{3}{4},\bar{y}+\frac{3}{4},\bar{x}+\frac{3}{4}\)
24\(h\)\(..2\)\(\frac{1}{8},y,\bar{y}+\frac{1}{4}\)\(\frac{3}{8},\bar{y},\bar{y}+\frac{3}{4}\)\(\frac{7}{8},y+\frac{1}{2},y+\frac{1}{4}\)\(\frac{5}{8},\bar{y}+\frac{1}{2},y+\frac{3}{4}\)
\(\bar{y}+\frac{1}{4},\frac{1}{8},y\)\(\bar{y}+\frac{3}{4},\frac{3}{8},\bar{y}\)\(y+\frac{1}{4},\frac{7}{8},y+\frac{1}{2}\)\(y+\frac{3}{4},\frac{5}{8},\bar{y}+\frac{1}{2}\)
\(y,\bar{y}+\frac{1}{4},\frac{1}{8}\)\(\bar{y},\bar{y}+\frac{3}{4},\frac{3}{8}\)\(y+\frac{1}{2},y+\frac{1}{4},\frac{7}{8}\)\(\bar{y}+\frac{1}{2},y+\frac{3}{4},\frac{5}{8}\)
24\(g\)\(..2\)\(\frac{1}{8},y,y+\frac{1}{4}\)\(\frac{3}{8},\bar{y},y+\frac{3}{4}\)\(\frac{7}{8},y+\frac{1}{2},\bar{y}+\frac{1}{4}\)\(\frac{5}{8},\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4}\)
\(y+\frac{1}{4},\frac{1}{8},y\)\(y+\frac{3}{4},\frac{3}{8},\bar{y}\)\(\bar{y}+\frac{1}{4},\frac{7}{8},y+\frac{1}{2}\)\(\bar{y}+\frac{3}{4},\frac{5}{8},\bar{y}+\frac{1}{2}\)
\(y,y+\frac{1}{4},\frac{1}{8}\)\(\bar{y},y+\frac{3}{4},\frac{3}{8}\)\(y+\frac{1}{2},\bar{y}+\frac{1}{4},\frac{7}{8}\)\(\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4},\frac{5}{8}\)
24\(f\)\(2..\)\(x,0,\frac{1}{4}\)\(\bar{x}+\frac{1}{2},0,\frac{3}{4}\)\(\frac{1}{4},x,0\)\(\frac{3}{4},\bar{x}+\frac{1}{2},0\)
\(0,\frac{1}{4},x\)\(0,\frac{3}{4},\bar{x}+\frac{1}{2}\)\(\frac{3}{4},x+\frac{1}{4},0\)\(\frac{3}{4},\bar{x}+\frac{3}{4},\frac{1}{2}\)
\(x+\frac{3}{4},\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{1}{4},0,\frac{1}{4}\)\(0,\frac{1}{4},\bar{x}+\frac{1}{4}\)\(\frac{1}{2},\frac{1}{4},x+\frac{3}{4}\)
16\(e\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}\)
\(x+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},\bar{x}+\frac{3}{4},\bar{x}+\frac{3}{4}\)\(x+\frac{1}{4},\bar{x}+\frac{1}{4},x+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},x+\frac{3}{4},x+\frac{1}{4}\)
12\(d\)\(2.22\)\(\frac{5}{8},0,\frac{1}{4}\)\(\frac{7}{8},0,\frac{3}{4}\)\(\frac{1}{4},\frac{5}{8},0\)\(\frac{3}{4},\frac{7}{8},0\)
\(0,\frac{1}{4},\frac{5}{8}\)\(0,\frac{3}{4},\frac{7}{8}\)
12\(c\)\(2.22\)\(\frac{1}{8},0,\frac{1}{4}\)\(\frac{3}{8},0,\frac{3}{4}\)\(\frac{1}{4},\frac{1}{8},0\)\(\frac{3}{4},\frac{3}{8},0\)
\(0,\frac{1}{4},\frac{1}{8}\)\(0,\frac{3}{4},\frac{3}{8}\)
8\(b\)\(0.32\)\(\frac{7}{8},\frac{7}{8},\frac{7}{8}\)\(\frac{5}{8},\frac{1}{8},\frac{3}{8}\)\(\frac{1}{8},\frac{3}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{5}{8},\frac{1}{8}\)
8\(a\)\(0.32\)\(\frac{1}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{3}{8},\frac{7}{8},\frac{5}{8}\)\(\frac{7}{8},\frac{5}{8},\frac{3}{8}\)\(\frac{5}{8},\frac{3}{8},\frac{7}{8}\)
511215\(P\ \bar{4}\ 3\ m\)\((0,0,0)+\)
24\(j\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y,x,z\)\(\bar{y},\bar{x},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,z,y\)\(\bar{x},z,\bar{y}\)\(\bar{x},\bar{z},y\)\(x,\bar{z},\bar{y}\)
\(z,y,x\)\(z,\bar{y},\bar{x}\)\(\bar{z},y,\bar{x}\)\(\bar{z},\bar{y},x\)
12\(i\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,\bar{z}\)\(x,\bar{x},\bar{z}\)
\(z,x,x\)\(z,\bar{x},\bar{x}\)\(\bar{z},\bar{x},x\)\(\bar{z},x,\bar{x}\)
\(x,z,x\)\(\bar{x},z,\bar{x}\)\(x,\bar{z},\bar{x}\)\(\bar{x},\bar{z},x\)
12\(h\)\(2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)
6\(g\)\(2.mm\)\(x,\frac{1}{2},\frac{1}{2}\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x,\frac{1}{2}\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
\(\frac{1}{2},\frac{1}{2},x\)\(\frac{1}{2},\frac{1}{2},\bar{x}\)
6\(f\)\(2.mm\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
4\(e\)\(.3m\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
3\(d\)\(-42.m\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)\(0,0,\frac{1}{2}\)
3\(c\)\(-42.m\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
1\(b\)\(-43m\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(a\)\(-43m\)\(0,0,0\)
512216\(F\ \bar{4}\ 3\ m\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
96\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y,x,z\)\(\bar{y},\bar{x},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,z,y\)\(\bar{x},z,\bar{y}\)\(\bar{x},\bar{z},y\)\(x,\bar{z},\bar{y}\)
\(z,y,x\)\(z,\bar{y},\bar{x}\)\(\bar{z},y,\bar{x}\)\(\bar{z},\bar{y},x\)
48\(h\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,\bar{z}\)\(x,\bar{x},\bar{z}\)
\(z,x,x\)\(z,\bar{x},\bar{x}\)\(\bar{z},\bar{x},x\)\(\bar{z},x,\bar{x}\)
\(x,z,x\)\(\bar{x},z,\bar{x}\)\(x,\bar{z},\bar{x}\)\(\bar{x},\bar{z},x\)
24\(g\)\(2.mm\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x},\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},x\)\(\frac{3}{4},\frac{1}{4},\bar{x}\)
24\(f\)\(2.mm\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
16\(e\)\(.3m\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
4\(d\)\(-43m\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
4\(c\)\(-43m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)
4\(b\)\(-43m\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
4\(a\)\(-43m\)\(0,0,0\)
513217\(I\ \bar{4}\ 3\ m\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
48\(h\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y,x,z\)\(\bar{y},\bar{x},z\)\(y,\bar{x},\bar{z}\)\(\bar{y},x,\bar{z}\)
\(x,z,y\)\(\bar{x},z,\bar{y}\)\(\bar{x},\bar{z},y\)\(x,\bar{z},\bar{y}\)
\(z,y,x\)\(z,\bar{y},\bar{x}\)\(\bar{z},y,\bar{x}\)\(\bar{z},\bar{y},x\)
24\(g\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,\bar{z}\)\(x,\bar{x},\bar{z}\)
\(z,x,x\)\(z,\bar{x},\bar{x}\)\(\bar{z},\bar{x},x\)\(\bar{z},x,\bar{x}\)
\(x,z,x\)\(\bar{x},z,\bar{x}\)\(x,\bar{z},\bar{x}\)\(\bar{x},\bar{z},x\)
24\(f\)\(2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)
12\(e\)\(2.mm\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
12\(d\)\(-4..\)\(\frac{1}{4},\frac{1}{2},0\)\(\frac{3}{4},\frac{1}{2},0\)\(0,\frac{1}{4},\frac{1}{2}\)\(0,\frac{3}{4},\frac{1}{2}\)
\(\frac{1}{2},0,\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
8\(c\)\(.3m\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
6\(b\)\(-42.m\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(-43m\)\(0,0,0\)
514218\(P\ \bar{4}\ 3\ n\)\((0,0,0)+\)
24\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(x+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(z+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},x+\frac{1}{2}\)
12\(h\)\(2..\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)\(\frac{1}{2},x+\frac{1}{2},0\)\(\frac{1}{2},\bar{x}+\frac{1}{2},0\)
\(x+\frac{1}{2},0,\frac{1}{2}\)\(\bar{x}+\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},x+\frac{1}{2}\)\(0,\frac{1}{2},\bar{x}+\frac{1}{2}\)
12\(g\)\(2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)\(0,x+\frac{1}{2},\frac{1}{2}\)\(0,\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(x+\frac{1}{2},\frac{1}{2},0\)\(\bar{x}+\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,x+\frac{1}{2}\)\(\frac{1}{2},0,\bar{x}+\frac{1}{2}\)
12\(f\)\(2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},x+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{x}+\frac{1}{2}\)
8\(e\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)
6\(d\)\(-4..\)\(\frac{1}{4},0,\frac{1}{2}\)\(\frac{3}{4},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{4},0\)\(\frac{1}{2},\frac{3}{4},0\)
\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)
6\(c\)\(-4..\)\(\frac{1}{4},\frac{1}{2},0\)\(\frac{3}{4},\frac{1}{2},0\)\(0,\frac{1}{4},\frac{1}{2}\)\(0,\frac{3}{4},\frac{1}{2}\)
\(\frac{1}{2},0,\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
6\(b\)\(222..\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)\(0,\frac{1}{2},0\)
\(\frac{1}{2},0,0\)\(0,0,\frac{1}{2}\)
2\(a\)\(23\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
515219\(F\ \bar{4}\ 3\ c\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
96\(h\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(x+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(z+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},x+\frac{1}{2}\)
48\(g\)\(2..\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x},\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},x\)\(\frac{3}{4},\frac{1}{4},\bar{x}\)\(\frac{3}{4},x+\frac{1}{2},\frac{3}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{3}{4}\)
\(x+\frac{1}{2},\frac{3}{4},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},x+\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\bar{x}+\frac{1}{2}\)
48\(f\)\(2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},x+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{x}+\frac{1}{2}\)
32\(e\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)
24\(d\)\(-4..\)\(\frac{1}{4},0,0\)\(\frac{3}{4},0,0\)\(0,\frac{1}{4},0\)\(0,\frac{3}{4},0\)
\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
24\(c\)\(-4..\)\(0,\frac{1}{4},\frac{1}{4}\)\(0,\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},0,\frac{1}{4}\)\(\frac{1}{4},0,\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)
8\(b\)\(23\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
8\(a\)\(23\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
516220\(I\ \bar{4}\ 3\ d\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
48\(e\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}\)\(\bar{z}+\frac{1}{2},\bar{x},y+\frac{1}{2}\)\(\bar{z},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}\)\(\bar{y}+\frac{1}{2},\bar{z},x+\frac{1}{2}\)
\(y+\frac{1}{4},x+\frac{1}{4},z+\frac{1}{4}\)\(\bar{y}+\frac{1}{4},\bar{x}+\frac{3}{4},z+\frac{3}{4}\)\(y+\frac{3}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4}\)\(\bar{y}+\frac{3}{4},x+\frac{3}{4},\bar{z}+\frac{1}{4}\)
\(x+\frac{1}{4},z+\frac{1}{4},y+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},z+\frac{3}{4},\bar{y}+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4},y+\frac{3}{4}\)\(x+\frac{3}{4},\bar{z}+\frac{1}{4},\bar{y}+\frac{3}{4}\)
\(z+\frac{1}{4},y+\frac{1}{4},x+\frac{1}{4}\)\(z+\frac{3}{4},\bar{y}+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(\bar{z}+\frac{3}{4},y+\frac{3}{4},\bar{x}+\frac{1}{4}\)\(\bar{z}+\frac{1}{4},\bar{y}+\frac{3}{4},x+\frac{3}{4}\)
24\(d\)\(2..\)\(x,0,\frac{1}{4}\)\(\bar{x}+\frac{1}{2},0,\frac{3}{4}\)\(\frac{1}{4},x,0\)\(\frac{3}{4},\bar{x}+\frac{1}{2},0\)
\(0,\frac{1}{4},x\)\(0,\frac{3}{4},\bar{x}+\frac{1}{2}\)\(\frac{1}{4},x+\frac{1}{4},\frac{1}{2}\)\(\frac{1}{4},\bar{x}+\frac{3}{4},0\)
\(x+\frac{1}{4},\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{3}{4},0,\frac{1}{4}\)\(\frac{1}{2},\frac{1}{4},x+\frac{1}{4}\)\(0,\frac{1}{4},\bar{x}+\frac{3}{4}\)
16\(c\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}\)
\(x+\frac{1}{4},x+\frac{1}{4},x+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},\bar{x}+\frac{3}{4},x+\frac{3}{4}\)\(x+\frac{3}{4},\bar{x}+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(\bar{x}+\frac{3}{4},x+\frac{3}{4},\bar{x}+\frac{1}{4}\)
12\(b\)\(-4..\)\(\frac{7}{8},0,\frac{1}{4}\)\(\frac{5}{8},0,\frac{3}{4}\)\(\frac{1}{4},\frac{7}{8},0\)\(\frac{3}{4},\frac{5}{8},0\)
\(0,\frac{1}{4},\frac{7}{8}\)\(0,\frac{3}{4},\frac{5}{8}\)
12\(a\)\(-4..\)\(\frac{3}{8},0,\frac{1}{4}\)\(\frac{1}{8},0,\frac{3}{4}\)\(\frac{1}{4},\frac{3}{8},0\)\(\frac{3}{4},\frac{1}{8},0\)
\(0,\frac{1}{4},\frac{3}{8}\)\(0,\frac{3}{4},\frac{1}{8}\)
517221\(P\ 4/m\ \bar{3}\ 2/m\)\((0,0,0)+\)
48\(n\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)\(y,\bar{x},z\)\(\bar{y},x,z\)
\(x,z,\bar{y}\)\(\bar{x},z,y\)\(\bar{x},\bar{z},\bar{y}\)\(x,\bar{z},y\)
\(z,y,\bar{x}\)\(z,\bar{y},x\)\(\bar{z},y,x\)\(\bar{z},\bar{y},\bar{x}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(x,\bar{y},z\)\(\bar{x},y,z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x,y\)\(z,x,\bar{y}\)\(z,\bar{x},y\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z},x\)\(\bar{y},z,x\)\(y,z,\bar{x}\)
\(\bar{y},\bar{x},z\)\(y,x,z\)\(\bar{y},x,\bar{z}\)\(y,\bar{x},\bar{z}\)
\(\bar{x},\bar{z},y\)\(x,\bar{z},\bar{y}\)\(x,z,y\)\(\bar{x},z,\bar{y}\)
\(\bar{z},\bar{y},x\)\(\bar{z},y,\bar{x}\)\(z,\bar{y},\bar{x}\)\(z,y,x\)
24\(m\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,\bar{z}\)\(x,\bar{x},\bar{z}\)
\(z,x,x\)\(z,\bar{x},\bar{x}\)\(\bar{z},\bar{x},x\)\(\bar{z},x,\bar{x}\)
\(x,z,x\)\(\bar{x},z,\bar{x}\)\(x,\bar{z},\bar{x}\)\(\bar{x},\bar{z},x\)
\(x,x,\bar{z}\)\(\bar{x},\bar{x},\bar{z}\)\(x,\bar{x},z\)\(\bar{x},x,z\)
\(x,z,\bar{x}\)\(\bar{x},z,x\)\(\bar{x},\bar{z},\bar{x}\)\(x,\bar{z},x\)
\(z,x,\bar{x}\)\(z,\bar{x},x\)\(\bar{z},x,x\)\(\bar{z},\bar{x},\bar{x}\)
24\(l\)\(m..\)\(\frac{1}{2},y,z\)\(\frac{1}{2},\bar{y},z\)\(\frac{1}{2},y,\bar{z}\)\(\frac{1}{2},\bar{y},\bar{z}\)
\(z,\frac{1}{2},y\)\(z,\frac{1}{2},\bar{y}\)\(\bar{z},\frac{1}{2},y\)\(\bar{z},\frac{1}{2},\bar{y}\)
\(y,z,\frac{1}{2}\)\(\bar{y},z,\frac{1}{2}\)\(y,\bar{z},\frac{1}{2}\)\(\bar{y},\bar{z},\frac{1}{2}\)
\(y,\frac{1}{2},\bar{z}\)\(\bar{y},\frac{1}{2},\bar{z}\)\(y,\frac{1}{2},z\)\(\bar{y},\frac{1}{2},z\)
\(\frac{1}{2},z,\bar{y}\)\(\frac{1}{2},z,y\)\(\frac{1}{2},\bar{z},\bar{y}\)\(\frac{1}{2},\bar{z},y\)
\(z,y,\frac{1}{2}\)\(z,\bar{y},\frac{1}{2}\)\(\bar{z},y,\frac{1}{2}\)\(\bar{z},\bar{y},\frac{1}{2}\)
24\(k\)\(m..\)\(0,y,z\)\(0,\bar{y},z\)\(0,y,\bar{z}\)\(0,\bar{y},\bar{z}\)
\(z,0,y\)\(z,0,\bar{y}\)\(\bar{z},0,y\)\(\bar{z},0,\bar{y}\)
\(y,z,0\)\(\bar{y},z,0\)\(y,\bar{z},0\)\(\bar{y},\bar{z},0\)
\(y,0,\bar{z}\)\(\bar{y},0,\bar{z}\)\(y,0,z\)\(\bar{y},0,z\)
\(0,z,\bar{y}\)\(0,z,y\)\(0,\bar{z},\bar{y}\)\(0,\bar{z},y\)
\(z,y,0\)\(z,\bar{y},0\)\(\bar{z},y,0\)\(\bar{z},\bar{y},0\)
12\(j\)\(m.m2\)\(\frac{1}{2},y,y\)\(\frac{1}{2},\bar{y},y\)\(\frac{1}{2},y,\bar{y}\)\(\frac{1}{2},\bar{y},\bar{y}\)
\(y,\frac{1}{2},y\)\(y,\frac{1}{2},\bar{y}\)\(\bar{y},\frac{1}{2},y\)\(\bar{y},\frac{1}{2},\bar{y}\)
\(y,y,\frac{1}{2}\)\(\bar{y},y,\frac{1}{2}\)\(y,\bar{y},\frac{1}{2}\)\(\bar{y},\bar{y},\frac{1}{2}\)
12\(i\)\(m.m2\)\(0,y,y\)\(0,\bar{y},y\)\(0,y,\bar{y}\)\(0,\bar{y},\bar{y}\)
\(y,0,y\)\(y,0,\bar{y}\)\(\bar{y},0,y\)\(\bar{y},0,\bar{y}\)
\(y,y,0\)\(\bar{y},y,0\)\(y,\bar{y},0\)\(\bar{y},\bar{y},0\)
12\(h\)\(mm2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(0,\frac{1}{2},\bar{x}\)\(0,\frac{1}{2},x\)
8\(g\)\(.3m\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x,x,\bar{x}\)\(\bar{x},\bar{x},\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
6\(f\)\(4m.m\)\(x,\frac{1}{2},\frac{1}{2}\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x,\frac{1}{2}\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
\(\frac{1}{2},\frac{1}{2},x\)\(\frac{1}{2},\frac{1}{2},\bar{x}\)
6\(e\)\(4m.m\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
3\(d\)\(4/mm.m\)\(\frac{1}{2},0,0\)\(0,\frac{1}{2},0\)\(0,0,\frac{1}{2}\)
3\(c\)\(4/mm.m\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
1\(b\)\(m\bar{3}m\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
1\(a\)\(m\bar{3}m\)\(0,0,0\)
518222\(P\ 4/n\ \bar{3}\ 2/n\)\((0,0,0)+\)
48\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)\(y,\bar{x},z\)\(\bar{y},x,z\)
\(x,z,\bar{y}\)\(\bar{x},z,y\)\(\bar{x},\bar{z},\bar{y}\)\(x,\bar{z},y\)
\(z,y,\bar{x}\)\(z,\bar{y},x\)\(\bar{z},y,x\)\(\bar{z},\bar{y},\bar{x}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},y+\frac{1}{2}\)\(z+\frac{1}{2},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},z+\frac{1}{2},x+\frac{1}{2}\)\(y+\frac{1}{2},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(x+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)
24\(h\)\(..2\)\(0,y,y\)\(0,\bar{y},y\)\(0,y,\bar{y}\)\(0,\bar{y},\bar{y}\)
\(y,0,y\)\(y,0,\bar{y}\)\(\bar{y},0,y\)\(\bar{y},0,\bar{y}\)
\(y,y,0\)\(\bar{y},y,0\)\(y,\bar{y},0\)\(\bar{y},\bar{y},0\)
\(\frac{1}{2},\bar{y}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\frac{1}{2},y+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\frac{1}{2},\bar{y}+\frac{1}{2},y+\frac{1}{2}\)\(\frac{1}{2},y+\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\frac{1}{2},y+\frac{1}{2}\)\(y+\frac{1}{2},\frac{1}{2},\bar{y}+\frac{1}{2}\)\(y+\frac{1}{2},\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{2}\)\(y+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{2}\)\(\bar{y}+\frac{1}{2},y+\frac{1}{2},\frac{1}{2}\)\(y+\frac{1}{2},y+\frac{1}{2},\frac{1}{2}\)
24\(g\)\(2..\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(\frac{1}{2},0,\bar{x}\)\(\frac{1}{2},0,x\)
\(\bar{x}+\frac{1}{2},\frac{1}{2},0\)\(x+\frac{1}{2},\frac{1}{2},0\)\(0,\bar{x}+\frac{1}{2},\frac{1}{2}\)\(0,x+\frac{1}{2},\frac{1}{2}\)
\(\frac{1}{2},0,\bar{x}+\frac{1}{2}\)\(\frac{1}{2},0,x+\frac{1}{2}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},0\)\(\frac{1}{2},x+\frac{1}{2},0\)
\(\bar{x}+\frac{1}{2},0,\frac{1}{2}\)\(x+\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},x+\frac{1}{2}\)\(0,\frac{1}{2},\bar{x}+\frac{1}{2}\)
16\(f\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x,x,\bar{x}\)\(\bar{x},\bar{x},\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
12\(e\)\(4..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},x+\frac{1}{2}\)
12\(d\)\(-4..\)\(\frac{1}{4},0,\frac{1}{2}\)\(\frac{3}{4},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{4},0\)\(\frac{1}{2},\frac{3}{4},0\)
\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)\(0,\frac{1}{4},\frac{1}{2}\)\(0,\frac{3}{4},\frac{1}{2}\)
\(\frac{1}{4},\frac{1}{2},0\)\(\frac{3}{4},\frac{1}{2},0\)\(\frac{1}{2},0,\frac{3}{4}\)\(\frac{1}{2},0,\frac{1}{4}\)
8\(c\)\(.\bar{3}.\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)
6\(b\)\(42.2\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,0\)
\(0,\frac{1}{2},0\)\(0,0,\frac{1}{2}\)
2\(a\)\(432\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
519222\(P\ 4/n\ \bar{3}\ 2/n\)\((0,0,0)+\)
48\(i\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(z,x,y\)\(z,\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2},y\)\(\bar{z}+\frac{1}{2},x,\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y}+\frac{1}{2},z,\bar{x}+\frac{1}{2}\)\(y,\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2},x\)
\(y,x,\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y,\bar{x}+\frac{1}{2},z\)\(\bar{y}+\frac{1}{2},x,z\)
\(x,z,\bar{y}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z,y\)\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(x,\bar{z}+\frac{1}{2},y\)
\(z,y,\bar{x}+\frac{1}{2}\)\(z,\bar{y}+\frac{1}{2},x\)\(\bar{z}+\frac{1}{2},y,x\)\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x+\frac{1}{2},y+\frac{1}{2}\)\(z+\frac{1}{2},x+\frac{1}{2},\bar{y}\)\(z+\frac{1}{2},\bar{x},y+\frac{1}{2}\)
\(\bar{y},\bar{z},\bar{x}\)\(y+\frac{1}{2},\bar{z},x+\frac{1}{2}\)\(\bar{y},z+\frac{1}{2},x+\frac{1}{2}\)\(y+\frac{1}{2},z+\frac{1}{2},\bar{x}\)
\(\bar{y},\bar{x},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},\bar{z}\)\(y+\frac{1}{2},\bar{x},\bar{z}\)
\(\bar{x},\bar{z},y+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z},\bar{y}\)\(x+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x},z+\frac{1}{2},\bar{y}\)
\(\bar{z},\bar{y},x+\frac{1}{2}\)\(\bar{z},y+\frac{1}{2},\bar{x}\)\(z+\frac{1}{2},\bar{y},\bar{x}\)\(z+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)
24\(h\)\(..2\)\(\frac{1}{4},y,y\)\(\frac{1}{4},\bar{y}+\frac{1}{2},y\)\(\frac{1}{4},y,\bar{y}+\frac{1}{2}\)\(\frac{1}{4},\bar{y}+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,\frac{1}{4},y\)\(y,\frac{1}{4},\bar{y}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\frac{1}{4},y\)\(\bar{y}+\frac{1}{2},\frac{1}{4},\bar{y}+\frac{1}{2}\)
\(y,y,\frac{1}{4}\)\(\bar{y}+\frac{1}{2},y,\frac{1}{4}\)\(y,\bar{y}+\frac{1}{2},\frac{1}{4}\)\(\bar{y}+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{4}\)
\(\frac{3}{4},\bar{y},\bar{y}\)\(\frac{3}{4},y+\frac{1}{2},\bar{y}\)\(\frac{3}{4},\bar{y},y+\frac{1}{2}\)\(\frac{3}{4},y+\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y},\frac{3}{4},\bar{y}\)\(\bar{y},\frac{3}{4},y+\frac{1}{2}\)\(y+\frac{1}{2},\frac{3}{4},\bar{y}\)\(y+\frac{1}{2},\frac{3}{4},y+\frac{1}{2}\)
\(\bar{y},\bar{y},\frac{3}{4}\)\(y+\frac{1}{2},\bar{y},\frac{3}{4}\)\(\bar{y},y+\frac{1}{2},\frac{3}{4}\)\(y+\frac{1}{2},y+\frac{1}{2},\frac{3}{4}\)
24\(g\)\(2..\)\(x,\frac{3}{4},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{3}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{3}{4}\)
\(\frac{3}{4},\frac{1}{4},x\)\(\frac{3}{4},\frac{1}{4},\bar{x}+\frac{1}{2}\)\(\frac{3}{4},x,\frac{1}{4}\)\(\frac{3}{4},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(x,\frac{1}{4},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\bar{x}+\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},x\)
\(\bar{x},\frac{1}{4},\frac{3}{4}\)\(x+\frac{1}{2},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\bar{x},\frac{1}{4}\)\(\frac{3}{4},x+\frac{1}{2},\frac{1}{4}\)
\(\frac{1}{4},\frac{3}{4},\bar{x}\)\(\frac{1}{4},\frac{3}{4},x+\frac{1}{2}\)\(\frac{1}{4},\bar{x},\frac{3}{4}\)\(\frac{1}{4},x+\frac{1}{2},\frac{3}{4}\)
\(\bar{x},\frac{3}{4},\frac{1}{4}\)\(x+\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},x+\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},\bar{x}\)
16\(f\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},x\)\(\bar{x}+\frac{1}{2},x,\bar{x}+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
\(x,x,\bar{x}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},x\)\(\bar{x}+\frac{1}{2},x,x\)
\(\bar{x},\bar{x},\bar{x}\)\(x+\frac{1}{2},x+\frac{1}{2},\bar{x}\)\(x+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},x+\frac{1}{2}\)
\(\bar{x},\bar{x},x+\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\bar{x}\)\(x+\frac{1}{2},\bar{x},\bar{x}\)
12\(e\)\(4..\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\frac{1}{4},\frac{1}{4},x\)\(\frac{1}{4},\frac{1}{4},\bar{x}+\frac{1}{2}\)\(\bar{x},\frac{3}{4},\frac{3}{4}\)\(x+\frac{1}{2},\frac{3}{4},\frac{3}{4}\)
\(\frac{3}{4},\bar{x},\frac{3}{4}\)\(\frac{3}{4},x+\frac{1}{2},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\bar{x}\)\(\frac{3}{4},\frac{3}{4},x+\frac{1}{2}\)
12\(d\)\(-4..\)\(0,\frac{3}{4},\frac{1}{4}\)\(\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},0,\frac{3}{4}\)\(\frac{1}{4},\frac{1}{2},\frac{3}{4}\)
\(\frac{3}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{3}{4},0,\frac{1}{4}\)\(\frac{3}{4},\frac{1}{2},\frac{1}{4}\)
\(0,\frac{1}{4},\frac{3}{4}\)\(\frac{1}{2},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},0\)
8\(c\)\(.\bar{3}.\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
\(0,0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
6\(b\)\(42.2\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)
2\(a\)\(432\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
520223\(P\ 4_2/m\ \bar{3}\ 2/n\)\((0,0,0)+\)
48\(l\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
\(x+\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)
\(z+\frac{1}{2},y+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(x,\bar{y},z\)\(\bar{x},y,z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x,y\)\(z,x,\bar{y}\)\(z,\bar{x},y\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z},x\)\(\bar{y},z,x\)\(y,z,\bar{x}\)
\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(x+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)
24\(k\)\(m..\)\(0,y,z\)\(0,\bar{y},z\)\(0,y,\bar{z}\)\(0,\bar{y},\bar{z}\)
\(z,0,y\)\(z,0,\bar{y}\)\(\bar{z},0,y\)\(\bar{z},0,\bar{y}\)
\(y,z,0\)\(\bar{y},z,0\)\(y,\bar{z},0\)\(\bar{y},\bar{z},0\)
\(y+\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
\(\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)
\(z+\frac{1}{2},y+\frac{1}{2},\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{2}\)
24\(j\)\(..2\)\(\frac{1}{4},y,y+\frac{1}{2}\)\(\frac{3}{4},\bar{y},y+\frac{1}{2}\)\(\frac{3}{4},y,\bar{y}+\frac{1}{2}\)\(\frac{1}{4},\bar{y},\bar{y}+\frac{1}{2}\)
\(y+\frac{1}{2},\frac{1}{4},y\)\(y+\frac{1}{2},\frac{3}{4},\bar{y}\)\(\bar{y}+\frac{1}{2},\frac{3}{4},y\)\(\bar{y}+\frac{1}{2},\frac{1}{4},\bar{y}\)
\(y,y+\frac{1}{2},\frac{1}{4}\)\(\bar{y},y+\frac{1}{2},\frac{3}{4}\)\(y,\bar{y}+\frac{1}{2},\frac{3}{4}\)\(\bar{y},\bar{y}+\frac{1}{2},\frac{1}{4}\)
\(\frac{3}{4},\bar{y},\bar{y}+\frac{1}{2}\)\(\frac{1}{4},y,\bar{y}+\frac{1}{2}\)\(\frac{1}{4},\bar{y},y+\frac{1}{2}\)\(\frac{3}{4},y,y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\frac{3}{4},\bar{y}\)\(\bar{y}+\frac{1}{2},\frac{1}{4},y\)\(y+\frac{1}{2},\frac{1}{4},\bar{y}\)\(y+\frac{1}{2},\frac{3}{4},y\)
\(\bar{y},\bar{y}+\frac{1}{2},\frac{3}{4}\)\(y,\bar{y}+\frac{1}{2},\frac{1}{4}\)\(\bar{y},y+\frac{1}{2},\frac{1}{4}\)\(y,y+\frac{1}{2},\frac{3}{4}\)
16\(i\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)
\(\bar{x},\bar{x},\bar{x}\)\(x,x,\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
12\(h\)\(mm2..\)\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)\(0,x+\frac{1}{2},\frac{1}{2}\)\(0,\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(x+\frac{1}{2},\frac{1}{2},0\)\(\bar{x}+\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,\bar{x}+\frac{1}{2}\)\(\frac{1}{2},0,x+\frac{1}{2}\)
12\(g\)\(mm2..\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)\(\frac{1}{2},x+\frac{1}{2},0\)\(\frac{1}{2},\bar{x}+\frac{1}{2},0\)
\(x+\frac{1}{2},0,\frac{1}{2}\)\(\bar{x}+\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\bar{x}+\frac{1}{2}\)\(0,\frac{1}{2},x+\frac{1}{2}\)
12\(f\)\(mm2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},x+\frac{1}{2}\)
8\(e\)\(0.32\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)
6\(d\)\(-4m.2\)\(\frac{1}{4},\frac{1}{2},0\)\(\frac{3}{4},\frac{1}{2},0\)\(0,\frac{1}{4},\frac{1}{2}\)\(0,\frac{3}{4},\frac{1}{2}\)
\(\frac{1}{2},0,\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
6\(c\)\(-4m.2\)\(\frac{1}{4},0,\frac{1}{2}\)\(\frac{3}{4},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{4},0\)\(\frac{1}{2},\frac{3}{4},0\)
\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)
6\(b\)\(mmm..\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)\(0,\frac{1}{2},0\)
\(\frac{1}{2},0,0\)\(0,0,\frac{1}{2}\)
2\(a\)\(m\bar{3}.\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
521224\(P\ 4_2/n\ \bar{3}\ 2/m\)\((0,0,0)+\)
48\(l\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
\(x+\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)
\(z+\frac{1}{2},y+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},y+\frac{1}{2}\)\(z+\frac{1}{2},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},z+\frac{1}{2},x+\frac{1}{2}\)\(y+\frac{1}{2},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)
\(\bar{y},\bar{x},z\)\(y,x,z\)\(\bar{y},x,\bar{z}\)\(y,\bar{x},\bar{z}\)
\(\bar{x},\bar{z},y\)\(x,\bar{z},\bar{y}\)\(x,z,y\)\(\bar{x},z,\bar{y}\)
\(\bar{z},\bar{y},x\)\(\bar{z},y,\bar{x}\)\(z,\bar{y},\bar{x}\)\(z,y,x\)
24\(k\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,\bar{z}\)\(x,\bar{x},\bar{z}\)
\(z,x,x\)\(z,\bar{x},\bar{x}\)\(\bar{z},\bar{x},x\)\(\bar{z},x,\bar{x}\)
\(x,z,x\)\(\bar{x},z,\bar{x}\)\(x,\bar{z},\bar{x}\)\(\bar{x},\bar{z},x\)
\(x+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
\(x+\frac{1}{2},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},x+\frac{1}{2}\)
\(z+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
24\(j\)\(..2\)\(\frac{1}{4},y,y+\frac{1}{2}\)\(\frac{3}{4},\bar{y},y+\frac{1}{2}\)\(\frac{3}{4},y,\bar{y}+\frac{1}{2}\)\(\frac{1}{4},\bar{y},\bar{y}+\frac{1}{2}\)
\(y+\frac{1}{2},\frac{1}{4},y\)\(y+\frac{1}{2},\frac{3}{4},\bar{y}\)\(\bar{y}+\frac{1}{2},\frac{3}{4},y\)\(\bar{y}+\frac{1}{2},\frac{1}{4},\bar{y}\)
\(y,y+\frac{1}{2},\frac{1}{4}\)\(\bar{y},y+\frac{1}{2},\frac{3}{4}\)\(y,\bar{y}+\frac{1}{2},\frac{3}{4}\)\(\bar{y},\bar{y}+\frac{1}{2},\frac{1}{4}\)
\(\frac{1}{4},\bar{y}+\frac{1}{2},\bar{y}\)\(\frac{3}{4},y+\frac{1}{2},\bar{y}\)\(\frac{3}{4},\bar{y}+\frac{1}{2},y\)\(\frac{1}{4},y+\frac{1}{2},y\)
\(\bar{y},\frac{1}{4},\bar{y}+\frac{1}{2}\)\(\bar{y},\frac{3}{4},y+\frac{1}{2}\)\(y,\frac{3}{4},\bar{y}+\frac{1}{2}\)\(y,\frac{1}{4},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\bar{y},\frac{1}{4}\)\(y+\frac{1}{2},\bar{y},\frac{3}{4}\)\(\bar{y}+\frac{1}{2},y,\frac{3}{4}\)\(y+\frac{1}{2},y,\frac{1}{4}\)
24\(i\)\(..2\)\(\frac{1}{4},y,\bar{y}+\frac{1}{2}\)\(\frac{3}{4},\bar{y},\bar{y}+\frac{1}{2}\)\(\frac{3}{4},y,y+\frac{1}{2}\)\(\frac{1}{4},\bar{y},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\frac{1}{4},y\)\(\bar{y}+\frac{1}{2},\frac{3}{4},\bar{y}\)\(y+\frac{1}{2},\frac{3}{4},y\)\(y+\frac{1}{2},\frac{1}{4},\bar{y}\)
\(y,\bar{y}+\frac{1}{2},\frac{1}{4}\)\(\bar{y},\bar{y}+\frac{1}{2},\frac{3}{4}\)\(y,y+\frac{1}{2},\frac{3}{4}\)\(\bar{y},y+\frac{1}{2},\frac{1}{4}\)
\(\frac{1}{4},\bar{y}+\frac{1}{2},y\)\(\frac{3}{4},y+\frac{1}{2},y\)\(\frac{3}{4},\bar{y}+\frac{1}{2},\bar{y}\)\(\frac{1}{4},y+\frac{1}{2},\bar{y}\)
\(y,\frac{1}{4},\bar{y}+\frac{1}{2}\)\(y,\frac{3}{4},y+\frac{1}{2}\)\(\bar{y},\frac{3}{4},\bar{y}+\frac{1}{2}\)\(\bar{y},\frac{1}{4},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},y,\frac{1}{4}\)\(y+\frac{1}{2},y,\frac{3}{4}\)\(\bar{y}+\frac{1}{2},\bar{y},\frac{3}{4}\)\(y+\frac{1}{2},\bar{y},\frac{1}{4}\)
24\(h\)\(2..\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)\(\frac{1}{2},x+\frac{1}{2},0\)\(\frac{1}{2},\bar{x}+\frac{1}{2},0\)
\(x+\frac{1}{2},0,\frac{1}{2}\)\(\bar{x}+\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\bar{x}+\frac{1}{2}\)\(0,\frac{1}{2},x+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\frac{1}{2},0\)\(x+\frac{1}{2},\frac{1}{2},0\)\(0,\bar{x}+\frac{1}{2},\frac{1}{2}\)\(0,x+\frac{1}{2},\frac{1}{2}\)
\(\frac{1}{2},0,\bar{x}+\frac{1}{2}\)\(\frac{1}{2},0,x+\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)\(0,x,\frac{1}{2}\)
\(\bar{x},\frac{1}{2},0\)\(x,\frac{1}{2},0\)\(\frac{1}{2},0,x\)\(\frac{1}{2},0,\bar{x}\)
12\(g\)\(2.mm\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},x+\frac{1}{2}\)
12\(f\)\(2.22\)\(\frac{1}{4},0,\frac{1}{2}\)\(\frac{3}{4},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{4},0\)\(\frac{1}{2},\frac{3}{4},0\)
\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{2},0\)\(\frac{3}{4},\frac{1}{2},0\)
\(0,\frac{1}{4},\frac{1}{2}\)\(0,\frac{3}{4},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{4}\)\(\frac{1}{2},0,\frac{3}{4}\)
8\(e\)\(.3m\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)
6\(d\)\(-42.m\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)\(0,\frac{1}{2},0\)
\(\frac{1}{2},0,0\)\(0,0,\frac{1}{2}\)
4\(c\)\(.\bar{3}m\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)
4\(b\)\(.\bar{3}m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
2\(a\)\(-43m\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
522224\(P\ 4_2/n\ \bar{3}\ 2/m\)\((0,0,0)+\)
48\(l\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(z,x,y\)\(z,\bar{x}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2},y\)\(\bar{z}+\frac{1}{2},x,\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y}+\frac{1}{2},z,\bar{x}+\frac{1}{2}\)\(y,\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{z}+\frac{1}{2},x\)
\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)\(y+\frac{1}{2},\bar{x},z+\frac{1}{2}\)\(\bar{y},x+\frac{1}{2},z+\frac{1}{2}\)
\(x+\frac{1}{2},z+\frac{1}{2},\bar{y}\)\(\bar{x},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x},\bar{z},\bar{y}\)\(x+\frac{1}{2},\bar{z},y+\frac{1}{2}\)
\(z+\frac{1}{2},y+\frac{1}{2},\bar{x}\)\(z+\frac{1}{2},\bar{y},x+\frac{1}{2}\)\(\bar{z},y+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z},\bar{y},\bar{x}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},z+\frac{1}{2}\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x+\frac{1}{2},y+\frac{1}{2}\)\(z+\frac{1}{2},x+\frac{1}{2},\bar{y}\)\(z+\frac{1}{2},\bar{x},y+\frac{1}{2}\)
\(\bar{y},\bar{z},\bar{x}\)\(y+\frac{1}{2},\bar{z},x+\frac{1}{2}\)\(\bar{y},z+\frac{1}{2},x+\frac{1}{2}\)\(y+\frac{1}{2},z+\frac{1}{2},\bar{x}\)
\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(y,x,z\)\(\bar{y}+\frac{1}{2},x,\bar{z}+\frac{1}{2}\)\(y,\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},y\)\(x,\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(x,z,y\)\(\bar{x}+\frac{1}{2},z,\bar{y}+\frac{1}{2}\)
\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},x\)\(\bar{z}+\frac{1}{2},y,\bar{x}+\frac{1}{2}\)\(z,\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z,y,x\)
24\(k\)\(..m\)\(x,x,z\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},z\)\(\bar{x}+\frac{1}{2},x,\bar{z}+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(z,x,x\)\(z,\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2},x\)\(\bar{z}+\frac{1}{2},x,\bar{x}+\frac{1}{2}\)
\(x,z,x\)\(\bar{x}+\frac{1}{2},z,\bar{x}+\frac{1}{2}\)\(x,\bar{z}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},x\)
\(x+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(\bar{x},\bar{x},\bar{z}\)\(x+\frac{1}{2},\bar{x},z+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},z+\frac{1}{2}\)
\(x+\frac{1}{2},z+\frac{1}{2},\bar{x}\)\(\bar{x},z+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x},\bar{z},\bar{x}\)\(x+\frac{1}{2},\bar{z},x+\frac{1}{2}\)
\(z+\frac{1}{2},x+\frac{1}{2},\bar{x}\)\(z+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{z},x+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z},\bar{x},\bar{x}\)
24\(j\)\(..2\)\(\frac{1}{2},y,\bar{y}\)\(0,\bar{y}+\frac{1}{2},\bar{y}\)\(0,y,y+\frac{1}{2}\)\(\frac{1}{2},\bar{y}+\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y},\frac{1}{2},y\)\(\bar{y},0,\bar{y}+\frac{1}{2}\)\(y+\frac{1}{2},0,y\)\(y+\frac{1}{2},\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,\bar{y},\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{y},0\)\(y,y+\frac{1}{2},0\)\(\bar{y}+\frac{1}{2},y+\frac{1}{2},\frac{1}{2}\)
\(\frac{1}{2},\bar{y},y\)\(0,y+\frac{1}{2},y\)\(0,\bar{y},\bar{y}+\frac{1}{2}\)\(\frac{1}{2},y+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,\frac{1}{2},\bar{y}\)\(y,0,y+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},0,\bar{y}\)\(\bar{y}+\frac{1}{2},\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y},y,\frac{1}{2}\)\(y+\frac{1}{2},y,0\)\(\bar{y},\bar{y}+\frac{1}{2},0\)\(y+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{2}\)
24\(i\)\(..2\)\(\frac{1}{2},y,y+\frac{1}{2}\)\(0,\bar{y}+\frac{1}{2},y+\frac{1}{2}\)\(0,y,\bar{y}\)\(\frac{1}{2},\bar{y}+\frac{1}{2},\bar{y}\)
\(y+\frac{1}{2},\frac{1}{2},y\)\(y+\frac{1}{2},0,\bar{y}+\frac{1}{2}\)\(\bar{y},0,y\)\(\bar{y},\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,y+\frac{1}{2},\frac{1}{2}\)\(\bar{y}+\frac{1}{2},y+\frac{1}{2},0\)\(y,\bar{y},0\)\(\bar{y}+\frac{1}{2},\bar{y},\frac{1}{2}\)
\(\frac{1}{2},\bar{y},\bar{y}+\frac{1}{2}\)\(0,y+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(0,\bar{y},y\)\(\frac{1}{2},y+\frac{1}{2},y\)
\(\bar{y}+\frac{1}{2},\frac{1}{2},\bar{y}\)\(\bar{y}+\frac{1}{2},0,y+\frac{1}{2}\)\(y,0,\bar{y}\)\(y,\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y},\bar{y}+\frac{1}{2},\frac{1}{2}\)\(y+\frac{1}{2},\bar{y}+\frac{1}{2},0\)\(\bar{y},y,0\)\(y+\frac{1}{2},y,\frac{1}{2}\)
24\(h\)\(2..\)\(x,\frac{1}{4},\frac{3}{4}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},x,\frac{1}{4}\)\(\frac{3}{4},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\frac{1}{4},\frac{3}{4},x\)\(\frac{1}{4},\frac{3}{4},\bar{x}+\frac{1}{2}\)\(\frac{3}{4},x+\frac{1}{2},\frac{1}{4}\)\(\frac{3}{4},\bar{x},\frac{1}{4}\)
\(x+\frac{1}{2},\frac{1}{4},\frac{3}{4}\)\(\bar{x},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\bar{x}\)\(\frac{1}{4},\frac{3}{4},x+\frac{1}{2}\)
\(\bar{x},\frac{3}{4},\frac{1}{4}\)\(x+\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\bar{x},\frac{3}{4}\)\(\frac{1}{4},x+\frac{1}{2},\frac{3}{4}\)
\(\frac{3}{4},\frac{1}{4},\bar{x}\)\(\frac{3}{4},\frac{1}{4},x+\frac{1}{2}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{3}{4}\)\(\frac{1}{4},x,\frac{3}{4}\)
\(\bar{x}+\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(x,\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},x\)\(\frac{3}{4},\frac{1}{4},\bar{x}+\frac{1}{2}\)
12\(g\)\(2.mm\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{2},\frac{1}{4}\)
\(\frac{1}{4},\frac{1}{4},x\)\(\frac{1}{4},\frac{1}{4},\bar{x}+\frac{1}{2}\)\(\frac{3}{4},x+\frac{1}{2},\frac{3}{4}\)\(\frac{3}{4},\bar{x},\frac{3}{4}\)
\(x+\frac{1}{2},\frac{3}{4},\frac{3}{4}\)\(\bar{x},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\bar{x}\)\(\frac{3}{4},\frac{3}{4},x+\frac{1}{2}\)
12\(f\)\(2.22\)\(\frac{1}{2},\frac{1}{4},\frac{3}{4}\)\(0,\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{2},\frac{1}{4}\)\(\frac{3}{4},0,\frac{1}{4}\)
\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},0\)\(\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(0,\frac{3}{4},\frac{1}{4}\)
\(\frac{1}{4},\frac{1}{2},\frac{3}{4}\)\(\frac{1}{4},0,\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{1}{4},0\)
8\(e\)\(.3m\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},x\)\(\bar{x}+\frac{1}{2},x,\bar{x}+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
\(x+\frac{1}{2},x+\frac{1}{2},\bar{x}\)\(\bar{x},\bar{x},\bar{x}\)\(x+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},x+\frac{1}{2}\)
6\(d\)\(-42.m\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)
\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)
4\(c\)\(.\bar{3}m\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(0,0,\frac{1}{2}\)\(0,\frac{1}{2},0\)\(\frac{1}{2},0,0\)
4\(b\)\(.\bar{3}m\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)
2\(a\)\(-43m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
523225\(F\ 4/m\ \bar{3}\ 2/m\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
192\(l\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)\(y,\bar{x},z\)\(\bar{y},x,z\)
\(x,z,\bar{y}\)\(\bar{x},z,y\)\(\bar{x},\bar{z},\bar{y}\)\(x,\bar{z},y\)
\(z,y,\bar{x}\)\(z,\bar{y},x\)\(\bar{z},y,x\)\(\bar{z},\bar{y},\bar{x}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(x,\bar{y},z\)\(\bar{x},y,z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x,y\)\(z,x,\bar{y}\)\(z,\bar{x},y\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z},x\)\(\bar{y},z,x\)\(y,z,\bar{x}\)
\(\bar{y},\bar{x},z\)\(y,x,z\)\(\bar{y},x,\bar{z}\)\(y,\bar{x},\bar{z}\)
\(\bar{x},\bar{z},y\)\(x,\bar{z},\bar{y}\)\(x,z,y\)\(\bar{x},z,\bar{y}\)
\(\bar{z},\bar{y},x\)\(\bar{z},y,\bar{x}\)\(z,\bar{y},\bar{x}\)\(z,y,x\)
96\(k\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,\bar{z}\)\(x,\bar{x},\bar{z}\)
\(z,x,x\)\(z,\bar{x},\bar{x}\)\(\bar{z},\bar{x},x\)\(\bar{z},x,\bar{x}\)
\(x,z,x\)\(\bar{x},z,\bar{x}\)\(x,\bar{z},\bar{x}\)\(\bar{x},\bar{z},x\)
\(x,x,\bar{z}\)\(\bar{x},\bar{x},\bar{z}\)\(x,\bar{x},z\)\(\bar{x},x,z\)
\(x,z,\bar{x}\)\(\bar{x},z,x\)\(\bar{x},\bar{z},\bar{x}\)\(x,\bar{z},x\)
\(z,x,\bar{x}\)\(z,\bar{x},x\)\(\bar{z},x,x\)\(\bar{z},\bar{x},\bar{x}\)
96\(j\)\(m..\)\(0,y,z\)\(0,\bar{y},z\)\(0,y,\bar{z}\)\(0,\bar{y},\bar{z}\)
\(z,0,y\)\(z,0,\bar{y}\)\(\bar{z},0,y\)\(\bar{z},0,\bar{y}\)
\(y,z,0\)\(\bar{y},z,0\)\(y,\bar{z},0\)\(\bar{y},\bar{z},0\)
\(y,0,\bar{z}\)\(\bar{y},0,\bar{z}\)\(y,0,z\)\(\bar{y},0,z\)
\(0,z,\bar{y}\)\(0,z,y\)\(0,\bar{z},\bar{y}\)\(0,\bar{z},y\)
\(z,y,0\)\(z,\bar{y},0\)\(\bar{z},y,0\)\(\bar{z},\bar{y},0\)
48\(i\)\(m.m2\)\(\frac{1}{2},y,y\)\(\frac{1}{2},\bar{y},y\)\(\frac{1}{2},y,\bar{y}\)\(\frac{1}{2},\bar{y},\bar{y}\)
\(y,\frac{1}{2},y\)\(y,\frac{1}{2},\bar{y}\)\(\bar{y},\frac{1}{2},y\)\(\bar{y},\frac{1}{2},\bar{y}\)
\(y,y,\frac{1}{2}\)\(\bar{y},y,\frac{1}{2}\)\(y,\bar{y},\frac{1}{2}\)\(\bar{y},\bar{y},\frac{1}{2}\)
48\(h\)\(m.m2\)\(0,y,y\)\(0,\bar{y},y\)\(0,y,\bar{y}\)\(0,\bar{y},\bar{y}\)
\(y,0,y\)\(y,0,\bar{y}\)\(\bar{y},0,y\)\(\bar{y},0,\bar{y}\)
\(y,y,0\)\(\bar{y},y,0\)\(y,\bar{y},0\)\(\bar{y},\bar{y},0\)
48\(g\)\(2.mm\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x},\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},x\)\(\frac{3}{4},\frac{1}{4},\bar{x}\)\(\frac{1}{4},x,\frac{3}{4}\)\(\frac{3}{4},\bar{x},\frac{3}{4}\)
\(x,\frac{1}{4},\frac{3}{4}\)\(\bar{x},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\bar{x}\)\(\frac{1}{4},\frac{3}{4},x\)
32\(f\)\(.3m\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x,x,\bar{x}\)\(\bar{x},\bar{x},\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
24\(e\)\(4m.m\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
24\(d\)\(m.mm\)\(0,\frac{1}{4},\frac{1}{4}\)\(0,\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},0,\frac{1}{4}\)\(\frac{1}{4},0,\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)
8\(c\)\(-43m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)
4\(b\)\(m\bar{3}m\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
4\(a\)\(m\bar{3}m\)\(0,0,0\)
524226\(F\ 4/m\ \bar{3}\ 2/c\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
192\(j\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)
\(x+\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)
\(z+\frac{1}{2},y+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(x,\bar{y},z\)\(\bar{x},y,z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x,y\)\(z,x,\bar{y}\)\(z,\bar{x},y\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z},x\)\(\bar{y},z,x\)\(y,z,\bar{x}\)
\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)
\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(x+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)
96\(i\)\(m..\)\(0,y,z\)\(0,\bar{y},z\)\(0,y,\bar{z}\)\(0,\bar{y},\bar{z}\)
\(z,0,y\)\(z,0,\bar{y}\)\(\bar{z},0,y\)\(\bar{z},0,\bar{y}\)
\(y,z,0\)\(\bar{y},z,0\)\(y,\bar{z},0\)\(\bar{y},\bar{z},0\)
\(y+\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},\frac{1}{2},z+\frac{1}{2}\)
\(\frac{1}{2},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\frac{1}{2},\bar{z}+\frac{1}{2},y+\frac{1}{2}\)
\(z+\frac{1}{2},y+\frac{1}{2},\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{2}\)\(\bar{z}+\frac{1}{2},y+\frac{1}{2},\frac{1}{2}\)\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},\frac{1}{2}\)
96\(h\)\(..2\)\(\frac{1}{4},y,y\)\(\frac{3}{4},\bar{y},y\)\(\frac{3}{4},y,\bar{y}\)\(\frac{1}{4},\bar{y},\bar{y}\)
\(y,\frac{1}{4},y\)\(y,\frac{3}{4},\bar{y}\)\(\bar{y},\frac{3}{4},y\)\(\bar{y},\frac{1}{4},\bar{y}\)
\(y,y,\frac{1}{4}\)\(\bar{y},y,\frac{3}{4}\)\(y,\bar{y},\frac{3}{4}\)\(\bar{y},\bar{y},\frac{1}{4}\)
\(\frac{3}{4},\bar{y},\bar{y}\)\(\frac{1}{4},y,\bar{y}\)\(\frac{1}{4},\bar{y},y\)\(\frac{3}{4},y,y\)
\(\bar{y},\frac{3}{4},\bar{y}\)\(\bar{y},\frac{1}{4},y\)\(y,\frac{1}{4},\bar{y}\)\(y,\frac{3}{4},y\)
\(\bar{y},\bar{y},\frac{3}{4}\)\(y,\bar{y},\frac{1}{4}\)\(\bar{y},y,\frac{1}{4}\)\(y,y,\frac{3}{4}\)
64\(g\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)
\(\bar{x},\bar{x},\bar{x}\)\(x,x,\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(x+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
48\(f\)\(4..\)\(x,\frac{1}{4},\frac{1}{4}\)\(\bar{x},\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},x,\frac{1}{4}\)\(\frac{1}{4},\bar{x},\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},x\)\(\frac{3}{4},\frac{1}{4},\bar{x}\)\(\bar{x},\frac{3}{4},\frac{3}{4}\)\(x,\frac{1}{4},\frac{3}{4}\)
\(\frac{3}{4},\bar{x},\frac{3}{4}\)\(\frac{3}{4},x,\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\bar{x}\)\(\frac{1}{4},\frac{3}{4},x\)
48\(e\)\(mm2..\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{2}\)
\(x+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\bar{x}+\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},\bar{x}+\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},x+\frac{1}{2}\)
24\(d\)\(4/m..\)\(0,\frac{1}{4},\frac{1}{4}\)\(0,\frac{3}{4},\frac{1}{4}\)\(\frac{1}{4},0,\frac{1}{4}\)\(\frac{1}{4},0,\frac{3}{4}\)
\(\frac{1}{4},\frac{1}{4},0\)\(\frac{3}{4},\frac{1}{4},0\)
24\(c\)\(-4m.2\)\(\frac{1}{4},0,0\)\(\frac{3}{4},0,0\)\(0,\frac{1}{4},0\)\(0,\frac{3}{4},0\)
\(0,0,\frac{1}{4}\)\(0,0,\frac{3}{4}\)
8\(b\)\(m\bar{3}.\)\(0,0,0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)
8\(a\)\(432\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)
525227\(F\ 4_1/d\ \bar{3}\ 2/m\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
192\(i\)\(1\)\(x,y,z\)\(\bar{x},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y},\bar{z}+\frac{1}{2}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x},\bar{y}+\frac{1}{2}\)\(\bar{z},\bar{x}+\frac{1}{2},y+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},\bar{y}\)
\(y,z,x\)\(\bar{y}+\frac{1}{2},z+\frac{1}{2},\bar{x}\)\(y+\frac{1}{2},\bar{z},\bar{x}+\frac{1}{2}\)\(\bar{y},\bar{z}+\frac{1}{2},x+\frac{1}{2}\)
\(y+\frac{3}{4},x+\frac{1}{4},\bar{z}+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(y+\frac{1}{4},\bar{x}+\frac{3}{4},z+\frac{3}{4}\)\(\bar{y}+\frac{3}{4},x+\frac{3}{4},z+\frac{1}{4}\)
\(x+\frac{3}{4},z+\frac{1}{4},\bar{y}+\frac{3}{4}\)\(\bar{x}+\frac{3}{4},z+\frac{3}{4},y+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{z}+\frac{3}{4},y+\frac{3}{4}\)
\(z+\frac{3}{4},y+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(z+\frac{1}{4},\bar{y}+\frac{3}{4},x+\frac{3}{4}\)\(\bar{z}+\frac{3}{4},y+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z}+\frac{1}{4},\bar{y}+\frac{1}{4},\bar{x}+\frac{1}{4}\)
\(\bar{x}+\frac{1}{4},\bar{y}+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(x+\frac{1}{4},y+\frac{3}{4},\bar{z}+\frac{3}{4}\)\(x+\frac{3}{4},\bar{y}+\frac{3}{4},z+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},y+\frac{1}{4},z+\frac{3}{4}\)
\(\bar{z}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(\bar{z}+\frac{3}{4},x+\frac{1}{4},y+\frac{3}{4}\)\(z+\frac{1}{4},x+\frac{3}{4},\bar{y}+\frac{3}{4}\)\(z+\frac{3}{4},\bar{x}+\frac{3}{4},y+\frac{1}{4}\)
\(\bar{y}+\frac{1}{4},\bar{z}+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(y+\frac{3}{4},\bar{z}+\frac{3}{4},x+\frac{1}{4}\)\(\bar{y}+\frac{3}{4},z+\frac{1}{4},x+\frac{3}{4}\)\(y+\frac{1}{4},z+\frac{3}{4},\bar{x}+\frac{3}{4}\)
\(\bar{y}+\frac{1}{2},\bar{x},z+\frac{1}{2}\)\(y,x,z\)\(\bar{y},x+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}\)
\(\bar{x}+\frac{1}{2},\bar{z},y+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}\)\(x,z,y\)\(\bar{x},z+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(\bar{z}+\frac{1}{2},\bar{y},x+\frac{1}{2}\)\(\bar{z},y+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}\)\(z,y,x\)
96\(h\)\(..2\)\(\frac{1}{8},y,\bar{y}+\frac{1}{4}\)\(\frac{7}{8},\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4}\)\(\frac{3}{8},y+\frac{1}{2},y+\frac{3}{4}\)\(\frac{5}{8},\bar{y},y+\frac{1}{4}\)
\(\bar{y}+\frac{1}{4},\frac{1}{8},y\)\(\bar{y}+\frac{3}{4},\frac{7}{8},\bar{y}+\frac{1}{2}\)\(y+\frac{3}{4},\frac{3}{8},y+\frac{1}{2}\)\(y+\frac{1}{4},\frac{5}{8},\bar{y}\)
\(y,\bar{y}+\frac{1}{4},\frac{1}{8}\)\(\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4},\frac{7}{8}\)\(y+\frac{1}{2},y+\frac{3}{4},\frac{3}{8}\)\(\bar{y},y+\frac{1}{4},\frac{5}{8}\)
\(\frac{1}{8},\bar{y}+\frac{1}{4},y\)\(\frac{3}{8},y+\frac{3}{4},y+\frac{1}{2}\)\(\frac{7}{8},\bar{y}+\frac{3}{4},\bar{y}+\frac{1}{2}\)\(\frac{5}{8},y+\frac{1}{4},\bar{y}\)
\(y,\frac{1}{8},\bar{y}+\frac{1}{4}\)\(y+\frac{1}{2},\frac{3}{8},y+\frac{3}{4}\)\(\bar{y}+\frac{1}{2},\frac{7}{8},\bar{y}+\frac{3}{4}\)\(\bar{y},\frac{5}{8},y+\frac{1}{4}\)
\(\bar{y}+\frac{1}{4},y,\frac{1}{8}\)\(y+\frac{3}{4},y+\frac{1}{2},\frac{3}{8}\)\(\bar{y}+\frac{3}{4},\bar{y}+\frac{1}{2},\frac{7}{8}\)\(y+\frac{1}{4},\bar{y},\frac{5}{8}\)
96\(g\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{x},\bar{z}+\frac{1}{2}\)
\(z,x,x\)\(z+\frac{1}{2},\bar{x},\bar{x}+\frac{1}{2}\)\(\bar{z},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},\bar{x}\)
\(x,z,x\)\(\bar{x}+\frac{1}{2},z+\frac{1}{2},\bar{x}\)\(x+\frac{1}{2},\bar{z},\bar{x}+\frac{1}{2}\)\(\bar{x},\bar{z}+\frac{1}{2},x+\frac{1}{2}\)
\(x+\frac{3}{4},x+\frac{1}{4},\bar{z}+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{x}+\frac{3}{4},z+\frac{3}{4}\)\(\bar{x}+\frac{3}{4},x+\frac{3}{4},z+\frac{1}{4}\)
\(x+\frac{3}{4},z+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(\bar{x}+\frac{3}{4},z+\frac{3}{4},x+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{z}+\frac{3}{4},x+\frac{3}{4}\)
\(z+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(z+\frac{1}{4},\bar{x}+\frac{3}{4},x+\frac{3}{4}\)\(\bar{z}+\frac{3}{4},x+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4}\)
48\(f\)\(2.mm\)\(x,0,0\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(0,x,0\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
\(0,0,x\)\(\frac{1}{2},\frac{1}{2},\bar{x}\)\(\frac{3}{4},x+\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{4},\frac{1}{4}\)
\(x+\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\bar{x}+\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\bar{x}+\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},x+\frac{3}{4}\)
32\(e\)\(.3m\)\(x,x,x\)\(\bar{x},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\bar{x}\)\(x+\frac{1}{2},\bar{x},\bar{x}+\frac{1}{2}\)
\(x+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{x}+\frac{3}{4},x+\frac{3}{4}\)\(\bar{x}+\frac{3}{4},x+\frac{3}{4},x+\frac{1}{4}\)
16\(d\)\(.\bar{3}m\)\(\frac{5}{8},\frac{5}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{7}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{1}{8},\frac{3}{8}\)\(\frac{1}{8},\frac{3}{8},\frac{7}{8}\)
16\(c\)\(.\bar{3}m\)\(\frac{1}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{3}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{5}{8},\frac{7}{8}\)\(\frac{5}{8},\frac{7}{8},\frac{3}{8}\)
8\(b\)\(-43m\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)
8\(a\)\(-43m\)\(0,0,0\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)
526227\(F\ 4_1/d\ \bar{3}\ 2/m\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
192\(i\)\(1\)\(x,y,z\)\(\bar{x}+\frac{3}{4},\bar{y}+\frac{1}{4},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{4},y+\frac{1}{2},\bar{z}+\frac{3}{4}\)\(x+\frac{1}{2},\bar{y}+\frac{3}{4},\bar{z}+\frac{1}{4}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{3}{4},\bar{y}+\frac{1}{4}\)\(\bar{z}+\frac{3}{4},\bar{x}+\frac{1}{4},y+\frac{1}{2}\)\(\bar{z}+\frac{1}{4},x+\frac{1}{2},\bar{y}+\frac{3}{4}\)
\(y,z,x\)\(\bar{y}+\frac{1}{4},z+\frac{1}{2},\bar{x}+\frac{3}{4}\)\(y+\frac{1}{2},\bar{z}+\frac{3}{4},\bar{x}+\frac{1}{4}\)\(\bar{y}+\frac{3}{4},\bar{z}+\frac{1}{4},x+\frac{1}{2}\)
\(y+\frac{3}{4},x+\frac{1}{4},\bar{z}+\frac{1}{2}\)\(\bar{y},\bar{x},\bar{z}\)\(y+\frac{1}{4},\bar{x}+\frac{1}{2},z+\frac{3}{4}\)\(\bar{y}+\frac{1}{2},x+\frac{3}{4},z+\frac{1}{4}\)
\(x+\frac{3}{4},z+\frac{1}{4},\bar{y}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{3}{4},y+\frac{1}{4}\)\(\bar{x},\bar{z},\bar{y}\)\(x+\frac{1}{4},\bar{z}+\frac{1}{2},y+\frac{3}{4}\)
\(z+\frac{3}{4},y+\frac{1}{4},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{4},\bar{y}+\frac{1}{2},x+\frac{3}{4}\)\(\bar{z}+\frac{1}{2},y+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z},\bar{y},\bar{x}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{4},y+\frac{3}{4},\bar{z}+\frac{1}{2}\)\(x+\frac{3}{4},\bar{y}+\frac{1}{2},z+\frac{1}{4}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{4},z+\frac{3}{4}\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{4},y+\frac{3}{4}\)\(z+\frac{1}{4},x+\frac{3}{4},\bar{y}+\frac{1}{2}\)\(z+\frac{3}{4},\bar{x}+\frac{1}{2},y+\frac{1}{4}\)
\(\bar{y},\bar{z},\bar{x}\)\(y+\frac{3}{4},\bar{z}+\frac{1}{2},x+\frac{1}{4}\)\(\bar{y}+\frac{1}{2},z+\frac{1}{4},x+\frac{3}{4}\)\(y+\frac{1}{4},z+\frac{3}{4},\bar{x}+\frac{1}{2}\)
\(\bar{y}+\frac{1}{4},\bar{x}+\frac{3}{4},z+\frac{1}{2}\)\(y,x,z\)\(\bar{y}+\frac{3}{4},x+\frac{1}{2},\bar{z}+\frac{1}{4}\)\(y+\frac{1}{2},\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4}\)
\(\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4},y+\frac{1}{2}\)\(x+\frac{1}{2},\bar{z}+\frac{1}{4},\bar{y}+\frac{3}{4}\)\(x,z,y\)\(\bar{x}+\frac{3}{4},z+\frac{1}{2},\bar{y}+\frac{1}{4}\)
\(\bar{z}+\frac{1}{4},\bar{y}+\frac{3}{4},x+\frac{1}{2}\)\(\bar{z}+\frac{3}{4},y+\frac{1}{2},\bar{x}+\frac{1}{4}\)\(z+\frac{1}{2},\bar{y}+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(z,y,x\)
96\(h\)\(..2\)\(0,y,\bar{y}\)\(\frac{3}{4},\bar{y}+\frac{1}{4},\bar{y}+\frac{1}{2}\)\(\frac{1}{4},y+\frac{1}{2},y+\frac{3}{4}\)\(\frac{1}{2},\bar{y}+\frac{3}{4},y+\frac{1}{4}\)
\(\bar{y},0,y\)\(\bar{y}+\frac{1}{2},\frac{3}{4},\bar{y}+\frac{1}{4}\)\(y+\frac{3}{4},\frac{1}{4},y+\frac{1}{2}\)\(y+\frac{1}{4},\frac{1}{2},\bar{y}+\frac{3}{4}\)
\(y,\bar{y},0\)\(\bar{y}+\frac{1}{4},\bar{y}+\frac{1}{2},\frac{3}{4}\)\(y+\frac{1}{2},y+\frac{3}{4},\frac{1}{4}\)\(\bar{y}+\frac{3}{4},y+\frac{1}{4},\frac{1}{2}\)
\(0,\bar{y},y\)\(\frac{1}{4},y+\frac{3}{4},y+\frac{1}{2}\)\(\frac{3}{4},\bar{y}+\frac{1}{2},\bar{y}+\frac{1}{4}\)\(\frac{1}{2},y+\frac{1}{4},\bar{y}+\frac{3}{4}\)
\(y,0,\bar{y}\)\(y+\frac{1}{2},\frac{1}{4},y+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},\frac{3}{4},\bar{y}+\frac{1}{2}\)\(\bar{y}+\frac{3}{4},\frac{1}{2},y+\frac{1}{4}\)
\(\bar{y},y,0\)\(y+\frac{3}{4},y+\frac{1}{2},\frac{1}{4}\)\(\bar{y}+\frac{1}{2},\bar{y}+\frac{1}{4},\frac{3}{4}\)\(y+\frac{1}{4},\bar{y}+\frac{3}{4},\frac{1}{2}\)
96\(g\)\(..m\)\(x,x,z\)\(\bar{x}+\frac{3}{4},\bar{x}+\frac{1}{4},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{4},x+\frac{1}{2},\bar{z}+\frac{3}{4}\)\(x+\frac{1}{2},\bar{x}+\frac{3}{4},\bar{z}+\frac{1}{4}\)
\(z,x,x\)\(z+\frac{1}{2},\bar{x}+\frac{3}{4},\bar{x}+\frac{1}{4}\)\(\bar{z}+\frac{3}{4},\bar{x}+\frac{1}{4},x+\frac{1}{2}\)\(\bar{z}+\frac{1}{4},x+\frac{1}{2},\bar{x}+\frac{3}{4}\)
\(x,z,x\)\(\bar{x}+\frac{1}{4},z+\frac{1}{2},\bar{x}+\frac{3}{4}\)\(x+\frac{1}{2},\bar{z}+\frac{3}{4},\bar{x}+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},\bar{z}+\frac{1}{4},x+\frac{1}{2}\)
\(x+\frac{3}{4},x+\frac{1}{4},\bar{z}+\frac{1}{2}\)\(\bar{x},\bar{x},\bar{z}\)\(x+\frac{1}{4},\bar{x}+\frac{1}{2},z+\frac{3}{4}\)\(\bar{x}+\frac{1}{2},x+\frac{3}{4},z+\frac{1}{4}\)
\(x+\frac{3}{4},z+\frac{1}{4},\bar{x}+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z+\frac{3}{4},x+\frac{1}{4}\)\(\bar{x},\bar{z},\bar{x}\)\(x+\frac{1}{4},\bar{z}+\frac{1}{2},x+\frac{3}{4}\)
\(z+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{4},\bar{x}+\frac{1}{2},x+\frac{3}{4}\)\(\bar{z}+\frac{1}{2},x+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z},\bar{x},\bar{x}\)
48\(f\)\(2.mm\)\(x,\frac{1}{8},\frac{1}{8}\)\(\bar{x}+\frac{3}{4},\frac{1}{8},\frac{5}{8}\)\(\frac{1}{8},x,\frac{1}{8}\)\(\frac{5}{8},\bar{x}+\frac{3}{4},\frac{1}{8}\)
\(\frac{1}{8},\frac{1}{8},x\)\(\frac{1}{8},\frac{5}{8},\bar{x}+\frac{3}{4}\)\(\frac{7}{8},x+\frac{1}{4},\frac{3}{8}\)\(\frac{7}{8},\bar{x},\frac{7}{8}\)
\(x+\frac{3}{4},\frac{3}{8},\frac{3}{8}\)\(\bar{x}+\frac{1}{2},\frac{7}{8},\frac{3}{8}\)\(\frac{7}{8},\frac{3}{8},\bar{x}+\frac{1}{2}\)\(\frac{3}{8},\frac{3}{8},x+\frac{3}{4}\)
32\(e\)\(.3m\)\(x,x,x\)\(\bar{x}+\frac{3}{4},\bar{x}+\frac{1}{4},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{4},x+\frac{1}{2},\bar{x}+\frac{3}{4}\)\(x+\frac{1}{2},\bar{x}+\frac{3}{4},\bar{x}+\frac{1}{4}\)
\(x+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{1}{2}\)\(\bar{x},\bar{x},\bar{x}\)\(x+\frac{1}{4},\bar{x}+\frac{1}{2},x+\frac{3}{4}\)\(\bar{x}+\frac{1}{2},x+\frac{3}{4},x+\frac{1}{4}\)
16\(d\)\(.\bar{3}m\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},0\)\(\frac{3}{4},0,\frac{1}{4}\)\(0,\frac{1}{4},\frac{3}{4}\)
16\(c\)\(.\bar{3}m\)\(0,0,0\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},\frac{3}{4},\frac{1}{4}\)
8\(b\)\(-43m\)\(\frac{3}{8},\frac{3}{8},\frac{3}{8}\)\(\frac{1}{8},\frac{5}{8},\frac{1}{8}\)
8\(a\)\(-43m\)\(\frac{1}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{3}{8},\frac{3}{8}\)
527228\(F\ 4_1/d\ \bar{3}\ 2/c\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
192\(h\)\(1\)\(x,y,z\)\(\bar{x},\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},\bar{z}\)\(x+\frac{1}{2},\bar{y},\bar{z}+\frac{1}{2}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x},\bar{y}+\frac{1}{2}\)\(\bar{z},\bar{x}+\frac{1}{2},y+\frac{1}{2}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},\bar{y}\)
\(y,z,x\)\(\bar{y}+\frac{1}{2},z+\frac{1}{2},\bar{x}\)\(y+\frac{1}{2},\bar{z},\bar{x}+\frac{1}{2}\)\(\bar{y},\bar{z}+\frac{1}{2},x+\frac{1}{2}\)
\(y+\frac{3}{4},x+\frac{1}{4},\bar{z}+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(y+\frac{1}{4},\bar{x}+\frac{3}{4},z+\frac{3}{4}\)\(\bar{y}+\frac{3}{4},x+\frac{3}{4},z+\frac{1}{4}\)
\(x+\frac{3}{4},z+\frac{1}{4},\bar{y}+\frac{3}{4}\)\(\bar{x}+\frac{3}{4},z+\frac{3}{4},y+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},\bar{z}+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{z}+\frac{3}{4},y+\frac{3}{4}\)
\(z+\frac{3}{4},y+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(z+\frac{1}{4},\bar{y}+\frac{3}{4},x+\frac{3}{4}\)\(\bar{z}+\frac{3}{4},y+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z}+\frac{1}{4},\bar{y}+\frac{1}{4},\bar{x}+\frac{1}{4}\)
\(\bar{x}+\frac{3}{4},\bar{y}+\frac{3}{4},\bar{z}+\frac{3}{4}\)\(x+\frac{3}{4},y+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{y}+\frac{1}{4},z+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},y+\frac{3}{4},z+\frac{1}{4}\)
\(\bar{z}+\frac{3}{4},\bar{x}+\frac{3}{4},\bar{y}+\frac{3}{4}\)\(\bar{z}+\frac{1}{4},x+\frac{3}{4},y+\frac{1}{4}\)\(z+\frac{3}{4},x+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(z+\frac{1}{4},\bar{x}+\frac{1}{4},y+\frac{3}{4}\)
\(\bar{y}+\frac{3}{4},\bar{z}+\frac{3}{4},\bar{x}+\frac{3}{4}\)\(y+\frac{1}{4},\bar{z}+\frac{1}{4},x+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},z+\frac{3}{4},x+\frac{1}{4}\)\(y+\frac{3}{4},z+\frac{1}{4},\bar{x}+\frac{1}{4}\)
\(\bar{y},\bar{x}+\frac{1}{2},z\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},x,\bar{z}\)\(y,\bar{x},\bar{z}+\frac{1}{2}\)
\(\bar{x},\bar{z}+\frac{1}{2},y\)\(x,\bar{z},\bar{y}+\frac{1}{2}\)\(x+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},z,\bar{y}\)
\(\bar{z},\bar{y}+\frac{1}{2},x\)\(\bar{z}+\frac{1}{2},y,\bar{x}\)\(z,\bar{y},\bar{x}+\frac{1}{2}\)\(z+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)
96\(g\)\(..2\)\(\frac{1}{8},y,\bar{y}+\frac{1}{4}\)\(\frac{7}{8},\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4}\)\(\frac{3}{8},y+\frac{1}{2},y+\frac{3}{4}\)\(\frac{5}{8},\bar{y},y+\frac{1}{4}\)
\(\bar{y}+\frac{1}{4},\frac{1}{8},y\)\(\bar{y}+\frac{3}{4},\frac{7}{8},\bar{y}+\frac{1}{2}\)\(y+\frac{3}{4},\frac{3}{8},y+\frac{1}{2}\)\(y+\frac{1}{4},\frac{5}{8},\bar{y}\)
\(y,\bar{y}+\frac{1}{4},\frac{1}{8}\)\(\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4},\frac{7}{8}\)\(y+\frac{1}{2},y+\frac{3}{4},\frac{3}{8}\)\(\bar{y},y+\frac{1}{4},\frac{5}{8}\)
\(\frac{5}{8},\bar{y}+\frac{3}{4},y+\frac{1}{2}\)\(\frac{7}{8},y+\frac{1}{4},y\)\(\frac{3}{8},\bar{y}+\frac{1}{4},\bar{y}\)\(\frac{1}{8},y+\frac{3}{4},\bar{y}+\frac{1}{2}\)
\(y+\frac{1}{2},\frac{5}{8},\bar{y}+\frac{3}{4}\)\(y,\frac{7}{8},y+\frac{1}{4}\)\(\bar{y},\frac{3}{8},\bar{y}+\frac{1}{4}\)\(\bar{y}+\frac{1}{2},\frac{1}{8},y+\frac{3}{4}\)
\(\bar{y}+\frac{3}{4},y+\frac{1}{2},\frac{5}{8}\)\(y+\frac{1}{4},y,\frac{7}{8}\)\(\bar{y}+\frac{1}{4},\bar{y},\frac{3}{8}\)\(y+\frac{3}{4},\bar{y}+\frac{1}{2},\frac{1}{8}\)
96\(f\)\(2..\)\(x,0,0\)\(\bar{x},\frac{1}{2},\frac{1}{2}\)\(0,x,0\)\(\frac{1}{2},\bar{x},\frac{1}{2}\)
\(0,0,x\)\(\frac{1}{2},\frac{1}{2},\bar{x}\)\(\frac{3}{4},x+\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\bar{x}+\frac{1}{4},\frac{1}{4}\)
\(x+\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\bar{x}+\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\bar{x}+\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},x+\frac{3}{4}\)
\(\bar{x}+\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(x+\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\bar{x}+\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},x+\frac{3}{4},\frac{1}{4}\)
\(\frac{3}{4},\frac{3}{4},\bar{x}+\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},x+\frac{3}{4}\)\(0,\bar{x}+\frac{1}{2},0\)\(\frac{1}{2},x+\frac{1}{2},\frac{1}{2}\)
\(\bar{x},\frac{1}{2},0\)\(x,0,\frac{1}{2}\)\(0,\frac{1}{2},x\)\(\frac{1}{2},0,\bar{x}\)
64\(e\)\(.3.\)\(x,x,x\)\(\bar{x},\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},\bar{x}\)\(x+\frac{1}{2},\bar{x},\bar{x}+\frac{1}{2}\)
\(x+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{x}+\frac{3}{4},x+\frac{3}{4}\)\(\bar{x}+\frac{3}{4},x+\frac{3}{4},x+\frac{1}{4}\)
\(\bar{x}+\frac{3}{4},\bar{x}+\frac{3}{4},\bar{x}+\frac{3}{4}\)\(x+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(x+\frac{1}{4},\bar{x}+\frac{1}{4},x+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},x+\frac{3}{4},x+\frac{1}{4}\)
\(\bar{x},\bar{x}+\frac{1}{2},x\)\(x+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x,\bar{x}\)\(x,\bar{x},\bar{x}+\frac{1}{2}\)
48\(d\)\(-4..\)\(\frac{1}{4},0,0\)\(\frac{3}{4},\frac{1}{2},\frac{1}{2}\)\(0,\frac{1}{4},0\)\(\frac{1}{2},\frac{3}{4},\frac{1}{2}\)
\(0,0,\frac{1}{4}\)\(\frac{1}{2},\frac{1}{2},\frac{3}{4}\)\(\frac{3}{4},\frac{1}{2},\frac{3}{4}\)\(\frac{1}{4},0,\frac{1}{4}\)
\(0,\frac{1}{4},\frac{3}{4}\)\(\frac{1}{2},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{1}{2}\)\(\frac{1}{4},\frac{3}{4},0\)
32\(c\)\(.\bar{3}.\)\(\frac{3}{8},\frac{3}{8},\frac{3}{8}\)\(\frac{5}{8},\frac{1}{8},\frac{7}{8}\)\(\frac{1}{8},\frac{7}{8},\frac{5}{8}\)\(\frac{7}{8},\frac{5}{8},\frac{1}{8}\)
\(\frac{1}{8},\frac{5}{8},\frac{3}{8}\)\(\frac{7}{8},\frac{7}{8},\frac{7}{8}\)\(\frac{5}{8},\frac{3}{8},\frac{1}{8}\)\(\frac{3}{8},\frac{1}{8},\frac{5}{8}\)
32\(b\)\(0.32\)\(\frac{1}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{3}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{5}{8},\frac{7}{8}\)\(\frac{5}{8},\frac{7}{8},\frac{3}{8}\)
\(\frac{5}{8},\frac{5}{8},\frac{5}{8}\)\(\frac{7}{8},\frac{3}{8},\frac{1}{8}\)\(\frac{3}{8},\frac{1}{8},\frac{7}{8}\)\(\frac{1}{8},\frac{7}{8},\frac{3}{8}\)
16\(a\)\(23\)\(0,0,0\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(0,\frac{1}{2},0\)
528228\(F\ 4_1/d\ \bar{3}\ 2/c\)\((0,0,0)+\)\( (0,\frac{1}{2},\frac{1}{2})+ \)\( (\frac{1}{2},0,\frac{1}{2})+ \)\( (\frac{1}{2},\frac{1}{2},0)+ \)
192\(h\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{4},\bar{y}+\frac{3}{4},z+\frac{1}{2}\)\(\bar{x}+\frac{3}{4},y+\frac{1}{2},\bar{z}+\frac{1}{4}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{4},\bar{z}+\frac{3}{4}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{1}{4},\bar{y}+\frac{3}{4}\)\(\bar{z}+\frac{1}{4},\bar{x}+\frac{3}{4},y+\frac{1}{2}\)\(\bar{z}+\frac{3}{4},x+\frac{1}{2},\bar{y}+\frac{1}{4}\)
\(y,z,x\)\(\bar{y}+\frac{3}{4},z+\frac{1}{2},\bar{x}+\frac{1}{4}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},\bar{z}+\frac{3}{4},x+\frac{1}{2}\)
\(y+\frac{3}{4},x+\frac{1}{4},\bar{z}\)\(\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(y+\frac{1}{4},\bar{x},z+\frac{3}{4}\)\(\bar{y},x+\frac{3}{4},z+\frac{1}{4}\)
\(x+\frac{3}{4},z+\frac{1}{4},\bar{y}\)\(\bar{x},z+\frac{3}{4},y+\frac{1}{4}\)\(\bar{x}+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2}\)\(x+\frac{1}{4},\bar{z},y+\frac{3}{4}\)
\(z+\frac{3}{4},y+\frac{1}{4},\bar{x}\)\(z+\frac{1}{4},\bar{y},x+\frac{3}{4}\)\(\bar{z},y+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z}+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{x}+\frac{1}{2}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{3}{4},y+\frac{1}{4},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{4},\bar{y}+\frac{1}{2},z+\frac{3}{4}\)\(\bar{x}+\frac{1}{2},y+\frac{3}{4},z+\frac{1}{4}\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z}+\frac{1}{2},x+\frac{3}{4},y+\frac{1}{4}\)\(z+\frac{3}{4},x+\frac{1}{4},\bar{y}+\frac{1}{2}\)\(z+\frac{1}{4},\bar{x}+\frac{1}{2},y+\frac{3}{4}\)
\(\bar{y},\bar{z},\bar{x}\)\(y+\frac{1}{4},\bar{z}+\frac{1}{2},x+\frac{3}{4}\)\(\bar{y}+\frac{1}{2},z+\frac{3}{4},x+\frac{1}{4}\)\(y+\frac{3}{4},z+\frac{1}{4},\bar{x}+\frac{1}{2}\)
\(\bar{y}+\frac{1}{4},\bar{x}+\frac{3}{4},z\)\(y+\frac{1}{2},x+\frac{1}{2},z+\frac{1}{2}\)\(\bar{y}+\frac{3}{4},x,\bar{z}+\frac{1}{4}\)\(y,\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4}\)
\(\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4},y\)\(x,\bar{z}+\frac{1}{4},\bar{y}+\frac{3}{4}\)\(x+\frac{1}{2},z+\frac{1}{2},y+\frac{1}{2}\)\(\bar{x}+\frac{3}{4},z,\bar{y}+\frac{1}{4}\)
\(\bar{z}+\frac{1}{4},\bar{y}+\frac{3}{4},x\)\(\bar{z}+\frac{3}{4},y,\bar{x}+\frac{1}{4}\)\(z,\bar{y}+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(z+\frac{1}{2},y+\frac{1}{2},x+\frac{1}{2}\)
96\(g\)\(..2\)\(\frac{1}{4},y,\bar{y}\)\(0,\bar{y}+\frac{3}{4},\bar{y}+\frac{1}{2}\)\(\frac{1}{2},y+\frac{1}{2},y+\frac{1}{4}\)\(\frac{3}{4},\bar{y}+\frac{1}{4},y+\frac{3}{4}\)
\(\bar{y},\frac{1}{4},y\)\(\bar{y}+\frac{1}{2},0,\bar{y}+\frac{3}{4}\)\(y+\frac{1}{4},\frac{1}{2},y+\frac{1}{2}\)\(y+\frac{3}{4},\frac{3}{4},\bar{y}+\frac{1}{4}\)
\(y,\bar{y},\frac{1}{4}\)\(\bar{y}+\frac{3}{4},\bar{y}+\frac{1}{2},0\)\(y+\frac{1}{2},y+\frac{1}{4},\frac{1}{2}\)\(\bar{y}+\frac{1}{4},y+\frac{3}{4},\frac{3}{4}\)
\(\frac{3}{4},\bar{y},y\)\(0,y+\frac{1}{4},y+\frac{1}{2}\)\(\frac{1}{2},\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4}\)\(\frac{1}{4},y+\frac{3}{4},\bar{y}+\frac{1}{4}\)
\(y,\frac{3}{4},\bar{y}\)\(y+\frac{1}{2},0,y+\frac{1}{4}\)\(\bar{y}+\frac{3}{4},\frac{1}{2},\bar{y}+\frac{1}{2}\)\(\bar{y}+\frac{1}{4},\frac{1}{4},y+\frac{3}{4}\)
\(\bar{y},y,\frac{3}{4}\)\(y+\frac{1}{4},y+\frac{1}{2},0\)\(\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4},\frac{1}{2}\)\(y+\frac{3}{4},\bar{y}+\frac{1}{4},\frac{1}{4}\)
96\(f\)\(2..\)\(x,\frac{1}{8},\frac{1}{8}\)\(\bar{x}+\frac{1}{4},\frac{5}{8},\frac{5}{8}\)\(\frac{1}{8},x,\frac{1}{8}\)\(\frac{5}{8},\bar{x}+\frac{1}{4},\frac{5}{8}\)
\(\frac{1}{8},\frac{1}{8},x\)\(\frac{5}{8},\frac{5}{8},\bar{x}+\frac{1}{4}\)\(\frac{7}{8},x+\frac{1}{4},\frac{7}{8}\)\(\frac{3}{8},\bar{x}+\frac{1}{2},\frac{3}{8}\)
\(x+\frac{3}{4},\frac{3}{8},\frac{7}{8}\)\(\bar{x},\frac{7}{8},\frac{3}{8}\)\(\frac{7}{8},\frac{3}{8},\bar{x}\)\(\frac{3}{8},\frac{7}{8},x+\frac{3}{4}\)
\(\bar{x},\frac{7}{8},\frac{7}{8}\)\(x+\frac{3}{4},\frac{3}{8},\frac{3}{8}\)\(\frac{7}{8},\bar{x},\frac{7}{8}\)\(\frac{3}{8},x+\frac{3}{4},\frac{3}{8}\)
\(\frac{7}{8},\frac{7}{8},\bar{x}\)\(\frac{3}{8},\frac{3}{8},x+\frac{3}{4}\)\(\frac{1}{8},\bar{x}+\frac{3}{4},\frac{1}{8}\)\(\frac{5}{8},x+\frac{1}{2},\frac{5}{8}\)
\(\bar{x}+\frac{1}{4},\frac{5}{8},\frac{1}{8}\)\(x,\frac{1}{8},\frac{5}{8}\)\(\frac{1}{8},\frac{5}{8},x\)\(\frac{5}{8},\frac{1}{8},\bar{x}+\frac{1}{4}\)
64\(e\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{4},\bar{x}+\frac{3}{4},x+\frac{1}{2}\)\(\bar{x}+\frac{3}{4},x+\frac{1}{2},\bar{x}+\frac{1}{4}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{4},\bar{x}+\frac{3}{4}\)
\(x+\frac{3}{4},x+\frac{1}{4},\bar{x}\)\(\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{4},\bar{x},x+\frac{3}{4}\)\(\bar{x},x+\frac{3}{4},x+\frac{1}{4}\)
\(\bar{x},\bar{x},\bar{x}\)\(x+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{4},\bar{x}+\frac{1}{2},x+\frac{3}{4}\)\(\bar{x}+\frac{1}{2},x+\frac{3}{4},x+\frac{1}{4}\)
\(\bar{x}+\frac{1}{4},\bar{x}+\frac{3}{4},x\)\(x+\frac{1}{2},x+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{3}{4},x,\bar{x}+\frac{1}{4}\)\(x,\bar{x}+\frac{1}{4},\bar{x}+\frac{3}{4}\)
48\(d\)\(-4..\)\(\frac{7}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{3}{8},\frac{5}{8},\frac{5}{8}\)\(\frac{1}{8},\frac{7}{8},\frac{1}{8}\)\(\frac{5}{8},\frac{3}{8},\frac{5}{8}\)
\(\frac{1}{8},\frac{1}{8},\frac{7}{8}\)\(\frac{5}{8},\frac{5}{8},\frac{3}{8}\)\(\frac{7}{8},\frac{1}{8},\frac{7}{8}\)\(\frac{3}{8},\frac{5}{8},\frac{3}{8}\)
\(\frac{5}{8},\frac{3}{8},\frac{7}{8}\)\(\frac{1}{8},\frac{7}{8},\frac{3}{8}\)\(\frac{7}{8},\frac{3}{8},\frac{1}{8}\)\(\frac{3}{8},\frac{7}{8},\frac{5}{8}\)
32\(c\)\(.\bar{3}.\)\(0,0,0\)\(\frac{1}{4},\frac{3}{4},\frac{1}{2}\)\(\frac{3}{4},\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\frac{1}{4},\frac{3}{4}\)
\(\frac{3}{4},\frac{1}{4},0\)\(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)\(\frac{1}{4},0,\frac{3}{4}\)\(0,\frac{3}{4},\frac{1}{4}\)
32\(b\)\(0.32\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)\(\frac{1}{2},\frac{3}{4},0\)\(\frac{3}{4},0,\frac{1}{2}\)
\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(0,\frac{1}{2},\frac{1}{4}\)\(\frac{1}{2},\frac{1}{4},0\)\(\frac{1}{4},0,\frac{1}{2}\)
16\(a\)\(23\)\(\frac{1}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{7}{8},\frac{3}{8},\frac{7}{8}\)\(\frac{7}{8},\frac{7}{8},\frac{7}{8}\)\(\frac{1}{8},\frac{5}{8},\frac{1}{8}\)
529229\(I\ 4/m\ \bar{3}\ 2/m\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
96\(l\)\(1\)\(x,y,z\)\(\bar{x},\bar{y},z\)\(\bar{x},y,\bar{z}\)\(x,\bar{y},\bar{z}\)
\(z,x,y\)\(z,\bar{x},\bar{y}\)\(\bar{z},\bar{x},y\)\(\bar{z},x,\bar{y}\)
\(y,z,x\)\(\bar{y},z,\bar{x}\)\(y,\bar{z},\bar{x}\)\(\bar{y},\bar{z},x\)
\(y,x,\bar{z}\)\(\bar{y},\bar{x},\bar{z}\)\(y,\bar{x},z\)\(\bar{y},x,z\)
\(x,z,\bar{y}\)\(\bar{x},z,y\)\(\bar{x},\bar{z},\bar{y}\)\(x,\bar{z},y\)
\(z,y,\bar{x}\)\(z,\bar{y},x\)\(\bar{z},y,x\)\(\bar{z},\bar{y},\bar{x}\)
\(\bar{x},\bar{y},\bar{z}\)\(x,y,\bar{z}\)\(x,\bar{y},z\)\(\bar{x},y,z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z},x,y\)\(z,x,\bar{y}\)\(z,\bar{x},y\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z},x\)\(\bar{y},z,x\)\(y,z,\bar{x}\)
\(\bar{y},\bar{x},z\)\(y,x,z\)\(\bar{y},x,\bar{z}\)\(y,\bar{x},\bar{z}\)
\(\bar{x},\bar{z},y\)\(x,\bar{z},\bar{y}\)\(x,z,y\)\(\bar{x},z,\bar{y}\)
\(\bar{z},\bar{y},x\)\(\bar{z},y,\bar{x}\)\(z,\bar{y},\bar{x}\)\(z,y,x\)
48\(k\)\(..m\)\(x,x,z\)\(\bar{x},\bar{x},z\)\(\bar{x},x,\bar{z}\)\(x,\bar{x},\bar{z}\)
\(z,x,x\)\(z,\bar{x},\bar{x}\)\(\bar{z},\bar{x},x\)\(\bar{z},x,\bar{x}\)
\(x,z,x\)\(\bar{x},z,\bar{x}\)\(x,\bar{z},\bar{x}\)\(\bar{x},\bar{z},x\)
\(x,x,\bar{z}\)\(\bar{x},\bar{x},\bar{z}\)\(x,\bar{x},z\)\(\bar{x},x,z\)
\(x,z,\bar{x}\)\(\bar{x},z,x\)\(\bar{x},\bar{z},\bar{x}\)\(x,\bar{z},x\)
\(z,x,\bar{x}\)\(z,\bar{x},x\)\(\bar{z},x,x\)\(\bar{z},\bar{x},\bar{x}\)
48\(j\)\(m..\)\(0,y,z\)\(0,\bar{y},z\)\(0,y,\bar{z}\)\(0,\bar{y},\bar{z}\)
\(z,0,y\)\(z,0,\bar{y}\)\(\bar{z},0,y\)\(\bar{z},0,\bar{y}\)
\(y,z,0\)\(\bar{y},z,0\)\(y,\bar{z},0\)\(\bar{y},\bar{z},0\)
\(y,0,\bar{z}\)\(\bar{y},0,\bar{z}\)\(y,0,z\)\(\bar{y},0,z\)
\(0,z,\bar{y}\)\(0,z,y\)\(0,\bar{z},\bar{y}\)\(0,\bar{z},y\)
\(z,y,0\)\(z,\bar{y},0\)\(\bar{z},y,0\)\(\bar{z},\bar{y},0\)
48\(i\)\(..2\)\(\frac{1}{4},y,\bar{y}+\frac{1}{2}\)\(\frac{3}{4},\bar{y},\bar{y}+\frac{1}{2}\)\(\frac{3}{4},y,y+\frac{1}{2}\)\(\frac{1}{4},\bar{y},y+\frac{1}{2}\)
\(\bar{y}+\frac{1}{2},\frac{1}{4},y\)\(\bar{y}+\frac{1}{2},\frac{3}{4},\bar{y}\)\(y+\frac{1}{2},\frac{3}{4},y\)\(y+\frac{1}{2},\frac{1}{4},\bar{y}\)
\(y,\bar{y}+\frac{1}{2},\frac{1}{4}\)\(\bar{y},\bar{y}+\frac{1}{2},\frac{3}{4}\)\(y,y+\frac{1}{2},\frac{3}{4}\)\(\bar{y},y+\frac{1}{2},\frac{1}{4}\)
\(\frac{3}{4},\bar{y},y+\frac{1}{2}\)\(\frac{1}{4},y,y+\frac{1}{2}\)\(\frac{1}{4},\bar{y},\bar{y}+\frac{1}{2}\)\(\frac{3}{4},y,\bar{y}+\frac{1}{2}\)
\(y+\frac{1}{2},\frac{3}{4},\bar{y}\)\(y+\frac{1}{2},\frac{1}{4},y\)\(\bar{y}+\frac{1}{2},\frac{1}{4},\bar{y}\)\(\bar{y}+\frac{1}{2},\frac{3}{4},y\)
\(\bar{y},y+\frac{1}{2},\frac{3}{4}\)\(y,y+\frac{1}{2},\frac{1}{4}\)\(\bar{y},\bar{y}+\frac{1}{2},\frac{1}{4}\)\(y,\bar{y}+\frac{1}{2},\frac{3}{4}\)
24\(h\)\(m.m2\)\(0,y,y\)\(0,\bar{y},y\)\(0,y,\bar{y}\)\(0,\bar{y},\bar{y}\)
\(y,0,y\)\(y,0,\bar{y}\)\(\bar{y},0,y\)\(\bar{y},0,\bar{y}\)
\(y,y,0\)\(\bar{y},y,0\)\(y,\bar{y},0\)\(\bar{y},\bar{y},0\)
24\(g\)\(mm2..\)\(x,0,\frac{1}{2}\)\(\bar{x},0,\frac{1}{2}\)\(\frac{1}{2},x,0\)\(\frac{1}{2},\bar{x},0\)
\(0,\frac{1}{2},x\)\(0,\frac{1}{2},\bar{x}\)\(0,x,\frac{1}{2}\)\(0,\bar{x},\frac{1}{2}\)
\(x,\frac{1}{2},0\)\(\bar{x},\frac{1}{2},0\)\(\frac{1}{2},0,\bar{x}\)\(\frac{1}{2},0,x\)
16\(f\)\(.3m\)\(x,x,x\)\(\bar{x},\bar{x},x\)\(\bar{x},x,\bar{x}\)\(x,\bar{x},\bar{x}\)
\(x,x,\bar{x}\)\(\bar{x},\bar{x},\bar{x}\)\(x,\bar{x},x\)\(\bar{x},x,x\)
12\(e\)\(4m.m\)\(x,0,0\)\(\bar{x},0,0\)\(0,x,0\)\(0,\bar{x},0\)
\(0,0,x\)\(0,0,\bar{x}\)
12\(d\)\(-4m.2\)\(\frac{1}{4},0,\frac{1}{2}\)\(\frac{3}{4},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{4},0\)\(\frac{1}{2},\frac{3}{4},0\)
\(0,\frac{1}{2},\frac{1}{4}\)\(0,\frac{1}{2},\frac{3}{4}\)
8\(c\)\(.\bar{3}m\)\(\frac{1}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{3}{4}\)
6\(b\)\(4/mm.m\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},0,\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
2\(a\)\(m\bar{3}m\)\(0,0,0\)
530230\(I\ 4_1/a\ \bar{3}\ 2/d\)\((0,0,0)+\)\( (\frac{1}{2},\frac{1}{2},\frac{1}{2})+ \)
96\(h\)\(1\)\(x,y,z\)\(\bar{x}+\frac{1}{2},\bar{y},z+\frac{1}{2}\)\(\bar{x},y+\frac{1}{2},\bar{z}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{y}+\frac{1}{2},\bar{z}\)
\(z,x,y\)\(z+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{y}\)\(\bar{z}+\frac{1}{2},\bar{x},y+\frac{1}{2}\)\(\bar{z},x+\frac{1}{2},\bar{y}+\frac{1}{2}\)
\(y,z,x\)\(\bar{y},z+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(y+\frac{1}{2},\bar{z}+\frac{1}{2},\bar{x}\)\(\bar{y}+\frac{1}{2},\bar{z},x+\frac{1}{2}\)
\(y+\frac{3}{4},x+\frac{1}{4},\bar{z}+\frac{1}{4}\)\(\bar{y}+\frac{3}{4},\bar{x}+\frac{3}{4},\bar{z}+\frac{3}{4}\)\(y+\frac{1}{4},\bar{x}+\frac{1}{4},z+\frac{3}{4}\)\(\bar{y}+\frac{1}{4},x+\frac{3}{4},z+\frac{1}{4}\)
\(x+\frac{3}{4},z+\frac{1}{4},\bar{y}+\frac{1}{4}\)\(\bar{x}+\frac{1}{4},z+\frac{3}{4},y+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},\bar{z}+\frac{3}{4},\bar{y}+\frac{3}{4}\)\(x+\frac{1}{4},\bar{z}+\frac{1}{4},y+\frac{3}{4}\)
\(z+\frac{3}{4},y+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(z+\frac{1}{4},\bar{y}+\frac{1}{4},x+\frac{3}{4}\)\(\bar{z}+\frac{1}{4},y+\frac{3}{4},x+\frac{1}{4}\)\(\bar{z}+\frac{3}{4},\bar{y}+\frac{3}{4},\bar{x}+\frac{3}{4}\)
\(\bar{x},\bar{y},\bar{z}\)\(x+\frac{1}{2},y,\bar{z}+\frac{1}{2}\)\(x,\bar{y}+\frac{1}{2},z+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},y+\frac{1}{2},z\)
\(\bar{z},\bar{x},\bar{y}\)\(\bar{z}+\frac{1}{2},x+\frac{1}{2},y\)\(z+\frac{1}{2},x,\bar{y}+\frac{1}{2}\)\(z,\bar{x}+\frac{1}{2},y+\frac{1}{2}\)
\(\bar{y},\bar{z},\bar{x}\)\(y,\bar{z}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{y}+\frac{1}{2},z+\frac{1}{2},x\)\(y+\frac{1}{2},z,\bar{x}+\frac{1}{2}\)
\(\bar{y}+\frac{1}{4},\bar{x}+\frac{3}{4},z+\frac{3}{4}\)\(y+\frac{1}{4},x+\frac{1}{4},z+\frac{1}{4}\)\(\bar{y}+\frac{3}{4},x+\frac{3}{4},\bar{z}+\frac{1}{4}\)\(y+\frac{3}{4},\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4}\)
\(\bar{x}+\frac{1}{4},\bar{z}+\frac{3}{4},y+\frac{3}{4}\)\(x+\frac{3}{4},\bar{z}+\frac{1}{4},\bar{y}+\frac{3}{4}\)\(x+\frac{1}{4},z+\frac{1}{4},y+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},z+\frac{3}{4},\bar{y}+\frac{1}{4}\)
\(\bar{z}+\frac{1}{4},\bar{y}+\frac{3}{4},x+\frac{3}{4}\)\(\bar{z}+\frac{3}{4},y+\frac{3}{4},\bar{x}+\frac{1}{4}\)\(z+\frac{3}{4},\bar{y}+\frac{1}{4},\bar{x}+\frac{3}{4}\)\(z+\frac{1}{4},y+\frac{1}{4},x+\frac{1}{4}\)
48\(g\)\(..2\)\(\frac{1}{8},y,\bar{y}+\frac{1}{4}\)\(\frac{3}{8},\bar{y},\bar{y}+\frac{3}{4}\)\(\frac{7}{8},y+\frac{1}{2},y+\frac{1}{4}\)\(\frac{5}{8},\bar{y}+\frac{1}{2},y+\frac{3}{4}\)
\(\bar{y}+\frac{1}{4},\frac{1}{8},y\)\(\bar{y}+\frac{3}{4},\frac{3}{8},\bar{y}\)\(y+\frac{1}{4},\frac{7}{8},y+\frac{1}{2}\)\(y+\frac{3}{4},\frac{5}{8},\bar{y}+\frac{1}{2}\)
\(y,\bar{y}+\frac{1}{4},\frac{1}{8}\)\(\bar{y},\bar{y}+\frac{3}{4},\frac{3}{8}\)\(y+\frac{1}{2},y+\frac{1}{4},\frac{7}{8}\)\(\bar{y}+\frac{1}{2},y+\frac{3}{4},\frac{5}{8}\)
\(\frac{7}{8},\bar{y},y+\frac{3}{4}\)\(\frac{5}{8},y,y+\frac{1}{4}\)\(\frac{1}{8},\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4}\)\(\frac{3}{8},y+\frac{1}{2},\bar{y}+\frac{1}{4}\)
\(y+\frac{3}{4},\frac{7}{8},\bar{y}\)\(y+\frac{1}{4},\frac{5}{8},y\)\(\bar{y}+\frac{3}{4},\frac{1}{8},\bar{y}+\frac{1}{2}\)\(\bar{y}+\frac{1}{4},\frac{3}{8},y+\frac{1}{2}\)
\(\bar{y},y+\frac{3}{4},\frac{7}{8}\)\(y,y+\frac{1}{4},\frac{5}{8}\)\(\bar{y}+\frac{1}{2},\bar{y}+\frac{3}{4},\frac{1}{8}\)\(y+\frac{1}{2},\bar{y}+\frac{1}{4},\frac{3}{8}\)
48\(f\)\(2..\)\(x,0,\frac{1}{4}\)\(\bar{x}+\frac{1}{2},0,\frac{3}{4}\)\(\frac{1}{4},x,0\)\(\frac{3}{4},\bar{x}+\frac{1}{2},0\)
\(0,\frac{1}{4},x\)\(0,\frac{3}{4},\bar{x}+\frac{1}{2}\)\(\frac{3}{4},x+\frac{1}{4},0\)\(\frac{3}{4},\bar{x}+\frac{3}{4},\frac{1}{2}\)
\(x+\frac{3}{4},\frac{1}{2},\frac{1}{4}\)\(\bar{x}+\frac{1}{4},0,\frac{1}{4}\)\(0,\frac{1}{4},\bar{x}+\frac{1}{4}\)\(\frac{1}{2},\frac{1}{4},x+\frac{3}{4}\)
\(\bar{x},0,\frac{3}{4}\)\(x+\frac{1}{2},0,\frac{1}{4}\)\(\frac{3}{4},\bar{x},0\)\(\frac{1}{4},x+\frac{1}{2},0\)
\(0,\frac{3}{4},\bar{x}\)\(0,\frac{1}{4},x+\frac{1}{2}\)\(\frac{1}{4},\bar{x}+\frac{3}{4},0\)\(\frac{1}{4},x+\frac{1}{4},\frac{1}{2}\)
\(\bar{x}+\frac{1}{4},\frac{1}{2},\frac{3}{4}\)\(x+\frac{3}{4},0,\frac{3}{4}\)\(0,\frac{3}{4},x+\frac{3}{4}\)\(\frac{1}{2},\frac{3}{4},\bar{x}+\frac{1}{4}\)
32\(e\)\(.3.\)\(x,x,x\)\(\bar{x}+\frac{1}{2},\bar{x},x+\frac{1}{2}\)\(\bar{x},x+\frac{1}{2},\bar{x}+\frac{1}{2}\)\(x+\frac{1}{2},\bar{x}+\frac{1}{2},\bar{x}\)
\(x+\frac{3}{4},x+\frac{1}{4},\bar{x}+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},\bar{x}+\frac{3}{4},\bar{x}+\frac{3}{4}\)\(x+\frac{1}{4},\bar{x}+\frac{1}{4},x+\frac{3}{4}\)\(\bar{x}+\frac{1}{4},x+\frac{3}{4},x+\frac{1}{4}\)
\(\bar{x},\bar{x},\bar{x}\)\(x+\frac{1}{2},x,\bar{x}+\frac{1}{2}\)\(x,\bar{x}+\frac{1}{2},x+\frac{1}{2}\)\(\bar{x}+\frac{1}{2},x+\frac{1}{2},x\)
\(\bar{x}+\frac{1}{4},\bar{x}+\frac{3}{4},x+\frac{3}{4}\)\(x+\frac{1}{4},x+\frac{1}{4},x+\frac{1}{4}\)\(\bar{x}+\frac{3}{4},x+\frac{3}{4},\bar{x}+\frac{1}{4}\)\(x+\frac{3}{4},\bar{x}+\frac{1}{4},\bar{x}+\frac{3}{4}\)
24\(d\)\(-4..\)\(\frac{3}{8},0,\frac{1}{4}\)\(\frac{1}{8},0,\frac{3}{4}\)\(\frac{1}{4},\frac{3}{8},0\)\(\frac{3}{4},\frac{1}{8},0\)
\(0,\frac{1}{4},\frac{3}{8}\)\(0,\frac{3}{4},\frac{1}{8}\)\(\frac{3}{4},\frac{5}{8},0\)\(\frac{3}{4},\frac{3}{8},\frac{1}{2}\)
\(\frac{1}{8},\frac{1}{2},\frac{1}{4}\)\(\frac{7}{8},0,\frac{1}{4}\)\(0,\frac{1}{4},\frac{7}{8}\)\(\frac{1}{2},\frac{1}{4},\frac{1}{8}\)
24\(c\)\(2.22\)\(\frac{1}{8},0,\frac{1}{4}\)\(\frac{3}{8},0,\frac{3}{4}\)\(\frac{1}{4},\frac{1}{8},0\)\(\frac{3}{4},\frac{3}{8},0\)
\(0,\frac{1}{4},\frac{1}{8}\)\(0,\frac{3}{4},\frac{3}{8}\)\(\frac{7}{8},0,\frac{3}{4}\)\(\frac{5}{8},0,\frac{1}{4}\)
\(\frac{3}{4},\frac{7}{8},0\)\(\frac{1}{4},\frac{5}{8},0\)\(0,\frac{3}{4},\frac{7}{8}\)\(0,\frac{1}{4},\frac{5}{8}\)
16\(b\)\(0.32\)\(\frac{1}{8},\frac{1}{8},\frac{1}{8}\)\(\frac{3}{8},\frac{7}{8},\frac{5}{8}\)\(\frac{7}{8},\frac{5}{8},\frac{3}{8}\)\(\frac{5}{8},\frac{3}{8},\frac{7}{8}\)
\(\frac{7}{8},\frac{7}{8},\frac{7}{8}\)\(\frac{5}{8},\frac{1}{8},\frac{3}{8}\)\(\frac{1}{8},\frac{3}{8},\frac{5}{8}\)\(\frac{3}{8},\frac{5}{8},\frac{1}{8}\)
16\(a\)\(.\bar{3}.\)\(0,0,0\)\(\frac{1}{2},0,\frac{1}{2}\)\(0,\frac{1}{2},\frac{1}{2}\)\(\frac{1}{2},\frac{1}{2},0\)
\(\frac{3}{4},\frac{1}{4},\frac{1}{4}\)\(\frac{3}{4},\frac{3}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{1}{4},\frac{3}{4}\)\(\frac{1}{4},\frac{3}{4},\frac{1}{4}\)

Seto's Page

Stupidity has a certain charm; ignorance does not. Frank Zappa