空間群と反射条件 (出現則/消滅則)

 回折とは、結晶に対して特定の条件(ブラッグ条件)で波を入射したとき散乱波が強め合う現象のことです。ただし、ブラッグ条件を満たしたからと言って、必ず回折が起きるわけではありません。結晶が複合格子並進、らせん、映進などの対称操作を有している場合は、たとえブラッグ条件を満たしても、特定の面指数の回折波の強度は消滅1します。このページでは、回折が観測された結晶面指数のリストから空間群を絞り込むための方法を提供します。

 以下に示す表は、回折によって出現する面指数と空間群の関係一覧を示します。消滅する面指数でないことにご注意ください。

Triclinic 三斜晶系

Reflection conditionsExtinction
symbol
Point group
\(1\)\(\bar{1}\)
None\(P – \)\(P1\, _{(1)}\)\(P\bar{1}\, _{(2)}\)

Monoclinic 単斜晶系

Unique axis b

Reflection conditionsExtinction
symbol
Laue class \(1 2/m 1\)
Point group
\(hkl, 0kl, hk0\)\(h0l, h00, 00l\)\(0k0\)\(2\)\(m\)\(2/m\)
\(P1 – 1\)\(P121\, _{(3)}\)\(P1m1\, _{(6)}\)\(P1 2/m 1\, _{(10)}\)
\(k\)\(P12_11\)\(P12_11\, _{(4)}\)\(P1 2_1/m 1\, _{(11)}\)
\(h\)\(P1a1\)\(P1a1\, _{(7)}\)\(P1 2/a 1\, _{(13)}\)
\(h\)\(k\)\(P1 2_1/a 1\)\(P1 2_1/a 1\, _{(14)}\)
\(l\)\(P1c1\)\(P1c1\, _{(7)}\)\(P1 2/c 1\, _{(13)}\)
\(l\)\(k\)\(P1 2_1/c 1\)\(P1 2_1/c 1\, _{(14)}\)
\(h + l\)\(P1n1\)\(P1n1\, _{(7)}\)\(P1 2/n 1\, _{(13)}\)
\(h + l\)\(k\)\(P1 2_1/n 1\)\(P1 2_1/n 1\, _{(14)}\)
\(h + k\)\(h\)\(k\)\(C1 – 1\)\(C121\, _{(5)}\)\(C1m1\, _{(8)}\)\(C1 2/m 1\, _{(12)}\)
\(h + k\)\(h, l\)\(k\)\(C1c1\)\(C1c1\, _{(9)}\)\(C1 2/c 1\, _{(15)}\)
\(h + l\)\(l\)\(k\)\(A1 – 1\)\(A121\, _{(5)}\)\(A1m1\, _{(8)}\)\(A1 2/m 1\, _{(12)}\)
\(h + l\)\(h, l\)\(k\)\(A1n1\)\(A1n1\, _{(9)}\)\(A1 2/n 1\, _{(15)}\)
\(h + k + l\)\(h + l\)\(k\)\(I1 – 1\)\(I121\, _{(5)}\)\(I1m1\, _{(8)}\)\(I1 2/m 1\, _{(12)}\)
\(h + k + l\)\(h, l\)\(k\)\(I1a1\)\(I1a1\, _{(9)}\)\(I1 2/a 1\, _{(15)}\)

Unique axis c

Reflection conditionsExtinction
symbol
Laue class \(1 1 2/m\)
Point group
\(hkl, 0kl, h0l\)\(hk0, h00, 0k0\)\(00l\)\(2\)\(m\)\(2/m\)
\(P11 – \)\(P112\, _{(3)}\)\(P11 m\, _{(6)}\)\(P11 2/m\, _{(10)}\)
\(l\)\(P12_11\)\(P112_1\, _{(4)}\)\(P112_1/m\, _{(11)}\)
\(h\)\(P11a\)\(P11a\, _{(7)}\)\(P11 2/a\, _{(13)}\)
\(h\)\(l\)\(P11 2_1/a\)\(P11 2_1/a\, _{(14)}\)
\(k\)\(P11b\)\(P11b\, _{(7)}\)\(P11 2/b\, _{(13)}\)
\(k\)\(l\)\(P11 2_1/b\)\(P11 2_1/b\, _{(14)}\)
\(h + k\)\(P11n\)\(P11n\, _{(7)}\)\(P11 2/n\, _{(13)}\)
\(h + k\)\(l\)\(P11 2_1/n\)\(P1 1 2_1/n\, _{(14)}\)
\(h + l\)\(h\)\(l\)\(B11 – \)\(C112\, _{(5)}\)\(C11m\, _{(8)}\)\(C11 2/m\, _{(12)}\)
\(h + l\)\(h, k\)\(l\)\(B11n\)\(C11c\, _{(9)}\)\(C11 2/c\, _{(15)}\)
\(k + l\)\(k\)\(l\)\(A11 – \)\(A112\, _{(5)}\)\(A11m\, _{(8)}\)\(A11 2/m\, _{(12)}\)
\(k + l\)\(h, k\)\(l\)\(A11a\)\(A11n\, _{(9)}\)\(A11 2/n\, _{(15)}\)
\(h + k + l\)\(h + k\)\(l\)\(I11 – \)\(I112\, _{(5)}\)\(I11m\, _{(8)}\)\(I11 2/m\, _{(12)}\)
\(h + k + l\)\(h, k\)\(l\)\(I11b\)\(I11b\, _{(9)}\)\(I11 2/b\, _{(15)}\)

Unique axis a

Reflection conditionsExtinction
symbol
Laue class \(2/m 1 1\)
Point group
\(hkl, h0l, hk0\)\(0kl, 0k0, 00l\)\(h00\)\(2\)\(m\)\(2/m\)
\(P – 11\)\(P211\, _{(3)}\)\(Pm11\, _{(6)}\)\(P2/m 11\, _{(10)}\)
\(h\)\(P2_111\)\(P2_111\, _{(4)}\)\(P2_1/m 11\, _{(11)}\)
\(k\)\(Pb11\)\(P a 11\, _{(7)}\)\(P2/b 11\, _{(13)}\)
\(k\)\(h\)\(P2_1/b 11\)\(P2_1/b 11\, _{(14)}\)
\(l\)\(Pc11\)\(Pc11\, _{(7)}\)\(P2/c 11\, _{(13)}\)
\(l\)\(h\)\(P2_1/c 11\)\(P2_1/c 11\, _{(14)}\)
\(k + l\)\(Pn11\)\(Pn11\, _{(7)}\)\(P2/n 11\, _{(13)}\)
\(k + l\)\(h\)\(P2_1/n 11\)\(P2_1/n 11\, _{(14)}\)
\(h + k\)\(k\)\(h\)\(C – 11\)\(C211\, _{(5)}\)\(Cm11\, _{(8)}\)\(C2/m 11\, _{(12)}\)
\(h + k\)\(k, l\)\(h\)\(Cn11\)\(Cn11\, _{(9)}\)\(C2/n 11\, _{(15)}\)
\(h + l\)\(l\)\(h\)\(B – 11\)\(B211\, _{(5)}\)\(Bm11\, _{(8)}\)\(B2/m 11\, _{(12)}\)
\(h + l\)\(k, l\)\(h\)\(Bb11\)\(Bb11\, _{(9)}\)\(B2/b 11\, _{(15)}\)
\(h + k + l\)\(k + l\)\(h\)\(I – 11\)\(I211\, _{(5)}\)\(Im11\, _{(8)}\)\(I2/m 11\, _{(12)}\)
\(h + k + l\)\(k, l\)\(h\)\(Ic11\)\(Ic11\, _{(9)}\)\(I2/c 11\, _{(15)}\)

Orthorhombic 直方晶系

Reflection conditionsExtinction
symbol
Laue class \(mmm\ (2/m\, 2/m\, 2/m)\)
Point group
\(hkl\)\(0kl\)\(h0l\)\(hk0\)\(h00\)\(0k0\)\(00l\)\(222\)\(mm2\),
\(m2m\),
\(2mm\)
\(mmm\)
\(P – – – \)\(P222\, _{(16)}\)\(Pmm2\, _{(25)}\)
\(Pm2m\, _{(25)}\)
\(P2mm\, _{(25)}\)
\(Pmmm\, _{(47)}\)
\(l\)\(P – – 2_1\)\(P222_1\, _{(17)}\)
\(k\)\(P – 2_1 – \)\(P22_12\, _{(17)}\)
\(k\)\(l\)\(P – 2_12_1\)\(P22_12_1\, _{(18)}\)
\(h\)\(P2_1 – – \)\(P2_122\, _{(17)}\)
\(h\)\(l\)\(P2_1 – 2_1\)\(P2_122_1\, _{(18)}\)
\(h\)\(k\)\(P2_12_1 – \)\(P2_12_12\, _{(18)}\)
\(h\)\(k\)\(l\)\(P2_12_12_1\)\(P2_12_12_1\, _{(19)}\)
\(h\)\(h\)\(P – – a\)\(Pm2a\, _{(28)}\)
\( P2_1ma\, _{(26)}\)
\(Pmma\, _{(51)}\)
\(k\)\(k\)\(P – – b\)\(Pm2_1b\, _{(26)}\)
\( P2_1mb\, _{(28)}\)
\(Pmmb\, _{(51)}\)
\(h + k\)\(h\)\(k\)\(P – – n\)\(Pm2_1n\, _{(31)}\)
\( P2_1mn\, _{(31)}\)
\(Pmmn\, _{(59)}\)
\(h\)\(h\)\(P – a – \)\(Pma2\, _{(28)}\)
\( P2_1am\, _{(26)}\)
\(Pmam\, _{(51)}\)
\(h\)\(h\)\(h\)\(P – aa\)\(P2aa\, _{(27)}\)\(Pmaa\, _{(49)}\)
\(h\)\(k\)\(h\)\(k\)\(P – ab\)\(P2_1ab\, _{(29)}\)\(Pmab\, _{(57)}\)
\(h\)\(h + k\)\(h\)\(k\)\(P – an\)\(P2_1an\, _{(30)}\)\(Pman\, _{(53)}\)
\(l\)\(l\)\(P – c – \)\(Pmc2_1\, _{(26)}\)
\( P2cm\, _{(28)}\)
\(Pmcm\, _{(51)}\)
\(l\)\(h\)\(h\)\(l\)\(P – ca\)\(P2_1ca\, _{(29)}\)\(Pmca\, _{(57)}\)
\(l\)\(k\)\(k\)\(l\)\(P – cb\)\(P2cb\, _{(32)}\)\(Pmcb\, _{(55)}\)
\(l\)\(h + k\)\(h\)\(k\)\(l\)\(P – cn\)\(P2_1cn\, _{(33)}\)\(Pmcn\, _{(62)}\)
\(h + l\)\(h\)\(l\)\(P – n – \)\(Pmn2_1\, _{(31)}\)
\( P2_1nm\, _{(31)}\)
\(Pmnm\, _{(59)}\)
\(h + l\)\(h\)\(h\)\(l\)\(P – na\)\(P2na\, _{(30)}\)\(Pmna\, _{(53)}\)
\(h + l\)\(k\)\(h\)\(k\)\(l\)\(P – nb\)\(P2_1nb\, _{(33)}\)\(Pmnb\, _{(62)}\)
\(h + l\)\(h + k\)\(h\)\(k\)\(l\)\(P – nn\)\(P2nn\, _{(34)}\)\(Pmnn\, _{(58)}\)
\(k\)\(k\)\(Pb – – \)\(Pbm2\, _{(28)}\)
\( Pb2_1m\, _{(26)}\)
\(Pbmm\, _{(51)}\)
\(k\)\(h\)\(h\)\(k\)\(Pb – a\)\(Pb2_1a\, _{(29)}\)\(Pbma\, _{(57)}\)
\(k\)\(k\)\(k\)\(Pb – b\)\(Pb2b\, _{(27)}\)\(Pbmb\, _{(49)}\)
\(k\)\(h + k\)\(h\)\(k\)\(Pb – n\)\(Pb2n\, _{(30)}\)\(Pbmn\, _{(53)}\)
\(k\)\(h\)\(h\)\(k\)\(Pba – \)\(Pba2\, _{(32)}\)\(Pbam\, _{(55)}\)
\(k\)\(h\)\(h\)\(h\)\(k\)\(Pbaa\)\(Pbaa\, _{(54)}\)
\(k\)\(h\)\(k\)\(h\)\(k\)\(Pbab\)\(Pbab\, _{(54)}\)
\(k\)\(h\)\(h + k\)\(h\)\(k\)\(Pban\)\(Pban\, _{(50)}\)
\(k\)\(l\)\(k\)\(l\)\(Pbc – \)\(Pbc2_1\, _{(29)}\)\(Pbcm\, _{(57)}\)
\(k\)\(l\)\(h\)\(h\)\(k\)\(l\)\(Pbca\)\(Pbca\, _{(61)}\)
\(k\)\(l\)\(k\)\(k\)\(l\)\(Pbcb\)\(Pbcb\, _{(54)}\)
\(k\)\(l\)\(h + k\)\(h\)\(k\)\(l\)\(Pbcn\)\(Pbcn\, _{(60)}\)
\(k\)\(h + l\)\(h\)\(k\)\(l\)\(Pbn – \)\(Pbn2_1\, _{(33)}\)\(Pbnm\, _{(62)}\)
\(k\)\(h + l\)\(h\)\(h\)\(k\)\(l\)\(Pbna\)\(Pbna\, _{(60)}\)
\(k\)\(h + l\)\(k\)\(h\)\(k\)\(l\)\(Pbnb\)\(Pbnb\, _{(56)}\)
\(k\)\(h + l\)\(h + k\)\(h\)\(k\)\(l\)\(Pbnn\)\(Pbnn\, _{(52)}\)
\(l\)\(l\)\(Pc – – \)\(Pcm2_1\, _{(26)}\)
\( Pc2m\, _{(28)}\)
\(Pcmm\, _{(51)}\)
\(l\)\(h\)\(h\)\(l\)\(Pc – a\)\(Pc2a\, _{(32)}\)\(Pcma\, _{(55)}\)
\(l\)\(k\)\(k\)\(l\)\(Pc – b\)\(Pc2_1b\, _{(29)}\)\(Pcmb\, _{(57)}\)
\(l\)\(h + k\)\(h\)\(k\)\(l\)\(Pc – n\)\(Pc2_1n\, _{(33)}\)\(Pcmn\, _{(62)}\)
\(l\)\(h\)\(h\)\(l\)\(Pca – \)\(Pca2_1\, _{(29)}\)\(Pcam\, _{(57)}\)
\(l\)\(h\)\(h\)\(h\)\(l\)\(Pcaa\)\(Pcaa\, _{(54)}\)
\(l\)\(h\)\(k\)\(h\)\(k\)\(l\)\(Pcab\)\(Pcab\, _{(61)}\)
\(l\)\(h\)\(h + k\)\(h\)\(k\)\(l\)\(Pcan\)\(Pcan\, _{(60)}\)
\(l\)\(l\)\(l\)\(Pcc – \)\(Pcc2\, _{(27)}\)\(Pccm\, _{(49)}\)
\(l\)\(l\)\(h\)\(h\)\(l\)\(Pcca\)\(Pcca\, _{(54)}\)
\(l\)\(l\)\(k\)\(k\)\(l\)\(Pccb\)\(Pccb\, _{(54)}\)
\(l\)\(l\)\(h + k\)\(h\)\(k\)\(l\)\(Pccn\)\(Pccn\, _{(56)}\)
\(l\)\(h + l\)\(h\)\(l\)\(Pcn – \)\(Pcn2\, _{(30)}\)\(Pcnm\, _{(53)}\)
\(l\)\(h + l\)\(h\)\(h\)\(l\)\(Pcna\)\(Pcna\, _{(50)}\)
\(l\)\(h + l\)\(k\)\(h\)\(k\)\(l\)\(Pcnb\)\(Pcnb\, _{(60)}\)
\(l\)\(h + l\)\(h + k\)\(h\)\(k\)\(l\)\(Pcnn\)\(Pcnn\, _{(52)}\)
\(k + l\)\(k\)\(l\)\(Pn – – \)\(Pnm2_1\, _{(31)}\)
\( Pn2_1m\, _{(31)}\)
\(Pnmm\, _{(59)}\)
\(k + l\)\(h\)\(h\)\(k\)\(l\)\(Pn – a\)\(Pn2_1a\, _{(33)}\)\(Pnma\, _{(62)}\)
\(k + l\)\(k\)\(k\)\(l\)\(Pn – b\)\(Pn2b\, _{(30)}\)\(Pnmb\, _{(53)}\)
\(k + l\)\(h + k\)\(h\)\(k\)\(l\)\(Pn – n\)\(Pn2n\, _{(34)}\)\(Pnmn\, _{(58)}\)
\(k + l\)\(h\)\(h\)\(k\)\(l\)\(Pna – \)\(Pna2_1\, _{(33)}\)\(Pnam\, _{(62)}\)
\(k + l\)\(h\)\(h\)\(h\)\(k\)\(l\)\(Pnaa\)\(Pnaa\, _{(56)}\)
\(k + l\)\(h\)\(k\)\(h\)\(k\)\(l\)\(Pnab\)\(Pnab\, _{(60)}\)
\(k + l\)\(h\)\(h + k\)\(h\)\(k\)\(l\)\(Pnan\)\(Pnan\, _{(52)}\)
\(k + l\)\(l\)\(k\)\(l\)\(Pnc – \)\(Pnc2\, _{(30)}\)\(Pncm\, _{(53)}\)
\(k + l\)\(l\)\(h\)\(h\)\(k\)\(l\)\(Pnca\)\(Pnca\, _{(60)}\)
\(k + l\)\(l\)\(k\)\(k\)\(l\)\(Pncb\)\(Pncb\, _{(50)}\)
\(k + l\)\(l\)\(h + k\)\(h\)\(k\)\(l\)\(Pncn\)\(Pncn\, _{(52)}\)
\(k + l\)\(h + l\)\(h\)\(k\)\(l\)\(Pnn – \)\(Pnn2\, _{(34)}\) \(Pnnm\, _{(58)}\)
\(k + l\)\(h + l\)\(h\)\(h\)\(k\)\(l\)\(Pnna\)\(Pnna\, _{(52)}\)
\(k + l\)\(h + l\)\(k\)\(h\)\(k\)\(l\)\(Pnnb\)\(Pnnb\, _{(52)}\)
\(k + l\)\(h + l\)\(h + k\)\(h\)\(k\)\(l\)\(Pnnn\)\(Pnnn\, _{(48)}\)
\(h + k\)\(k\)\(h\)\(h + k\)\(h\)\(k\)\(C – – – \)\(C222\, _{(21)}\)\(Cmm2\, _{(35)}\)
\( Cm2m\, _{(38)}\)
\( C2mm\, _{(38)}\)
\(Cmmm\, _{(65)}\)
\(h + k\)\(k\)\(h\)\(h + k\)\(h\)\(k\)\(l\)\(C – – 2_1\)\(C222_1\, _{(20)}\)
\(h + k\)\(k\)\(h\)\(h, k\)\(h\)\(k\)\(C – – (ab)\)\(Cm2e\, _{(39)}\)
\( C2me\, _{(39)}\)
\(Cmme\, _{(67)}\)
\(h + k\)\(k\)\(h, l\)\(h + k\)\(h\)\(k\)\(l\)\(C – c – \)\(Cmc2_1\, _{(36)}\)
\( C2cm\, _{(40)}\)
\(Cmcm\, _{(63)}\)
\(h + k\)\(k\)\(h, l\)\(h, k\)\(h\)\(k\)\(l\)\(C – c(ab)\)\(C2ce\, _{(41)}\)\(Cmce\, _{(64)}\)
\(h + k\)\(k. l\)\(h\)\(h + k\)\(h\)\(k\)\(l\)\(Cc – – \)\(Ccm2_1\, _{(36)}\)
\( Cc2m\, _{(40)}\)
\(Ccmm\, _{(63)}\)
\(h + k\)\(k, l\)\(h\)\(h, k\)\(h\)\(k\)\(l\)\(Cc – (ab)\)\(Cc2e\, _{(41)}\)\(Ccme\, _{(64)}\)
\(h + k\)\(k. l\)\(h, l\)\(h + k\)\(h\)\(k\)\(l\)\(Ccc – \)\(Ccc2\, _{(37)}\)\(Cccm\, _{(66)}\)
\(h + k\)\(k. l\)\(h, l\)\(h, k\)\(h\)\(k\)\(l\)\(Ccc(ab)\)\(Ccce\, _{(68)}\)
\(h + l\)\(l\)\(h + l\)\(h\)\(h\)\(l\)\(B – – – \)\(B222\, _{(21)}\)\(Bmm2\, _{(38)}\)
\(Bm2m\, _{(35)}\)
\(B2mm\, _{(38)}\)
\(Bmmm\, _{(65)}\)
\(h + l\)\(l\)\(h + l\)\(h\)\(h\)\(k\)\(l\)\(B – 2_1 – \)\(B22_12\, _{(20)}\)
\(h + l\)\(l\)\(h + l\)\(h, k\)\(h\)\(k\)\(l\)\(B – – b\)\(Bm2_1b\, _{(36)}\)
\(B2mb\, _{(40)}\)
\(Bmmb\, _{(63)}\)
\(h + l\)\(l\)\(h, l\)\(h\)\(h\)\(l\)\(B – (ac) – \)\(Bme2\, _{(39)}\)
\(B2em\, _{(39)}\)
\(Bmem\, _{(67)}\)
\(h + l\)\(l\)\(h, l\)\(h, k\)\(h\)\(k\)\(l\)\(B – (ac)b\)\(B2eb\, _{(41)}\)\(Bmeb\, _{(64)}\)
\(h + l\)\(k. l\)\(h + l\)\(h\)\(h\)\(k\)\(l\)\(Bb – – \)\(Bbm2\, _{(40)}\)
\( Bb2_1m\, _{(36)}\)
\(Bbmm\, _{(63)}\)
\(h + l\)\(k. l\)\(h + l\)\(h, k\)\(h\)\(k\)\(l\)\(Bb – b\)\(Bb2b\, _{(37)}\)\(Bbmb\, _{(66)}\)
\(h + l\)\(k, l\)\(h. l\)\(h\)\(h\)\(k\)\(l\)\(Bb(ac) – \)\(Bbe2\, _{(41)}\)\(Bbem\, _{(64)}\)
\(h + l\)\(k. l\)\(h, l\)\(h, k\)\(h\)\(k\)\(l\)\(Bb(ac)b\)\(Bbeb\, _{(68)}\)
\(k + l\)\(k + l\)\(l\)\(k\)\(k\)\(l\)\(A – – – \)\(A222\, _{(21)}\)\(Amm2\, _{(38)}\)
\(Am2m\, _{(38)}\)
\(A2mm\, _{(35)}\)
\(Ammm\, _{(65)}\)
\(k + l\)\(k + l\)\(l\)\(k\)\(h\)\(k\)\(l\)\(A2_1 – – \)\(A2_122\, _{(20)}\)
\(k + l\)\(k + l\)\(l\)\(h, k\)\(h\)\(k\)\(l\)\(A – – a\)\(Am2a\, _{(40)}\)
\(A2_1ma\, _{(36)}\)
\(Amma\, _{(63)}\)
\(k + l\)\(k + l\)\(h, l\)\(k\)\(h\)\(k\)\(l\)\(A – a – \)\(Ama2\, _{(40)}\)
\(A2_1am\, _{(36)}\)
\(Amam\, _{(63)}\)
\(k + l\)\(k + l\)\(h, l\)\(h, k\)\(h\)\(k\)\(l\)\(A – aa\)\(A2aa\, _{(37)}\)\(Amaa\, _{(66)}\)
\(k + l\)\(k. l\)\(l\)\(k\)\(k\)\(l\)\(A(bc) – – \)\(Aem2\, _{(39)}\)
\(Ae2m\, _{(39)}\)
\(Aemm\, _{(67)}\)
\(k + l\)\(k. l\)\(l\)\(h, k\)\(h\)\(k\)\(l\)\(A(bc) – a\)\(Ae2a\, _{(41)}\)\(Aema\, _{(64)}\)
\(k + l\)\(k. l\)\(h, l\)\(k\)\(h\)\(k\)\(l\)\(A(bc)a – \)\(Aea2\, _{(41)}\)\(Aeam\, _{(64)}\)
\(k + l\)\(k, l\)\(h, l\)\(h, k\)\(h\)\(k\)\(l\)\(A(bc)aa\)\(Aeaa\, _{(68)}\)
\(h + k + l\)\(k + l\)\(h + l\)\(h + k\)\(h\)\(k\)\(l\)\(I – – – \)\(I222\, _{(23)}\)
\( I2_12_12_1\, _{(24)}\)
\(Imm2\, _{(44)}\)
\( Im2m\, _{(44)}\)
\( I2mm\, _{(44)}\)
\(Immm\, _{(71)}\)
\(h + k + l\)\(k + l\)\(h + l\)\(h, k\)\(h\)\(k\)\(l\)\(I – – (ab)\)\(Im2a\, _{(46)}\)
\( I2mb\, _{(46)}\)
\(Imma\, _{(74)}\)
\( Immb\, _{(74)}\)
\(h + k + l\)\(k + l\)\(h, l\)\(h + k\)\(h\)\(k\)\(l\)\(I – (ac) – \)\(Ima2\, _{(46)}\)
\( I2cm\, _{(46)}\)
\(Imam\, _{(74)}\)
\( Imcm\, _{(74)}\)
\(h + k + l\)\(k + l\)\(h, l\)\(h, k\)\(h\)\(k\)\(l\)\(I – cb\)\(I2cb\, _{(45)}\)\(Imcb\, _{(72)}\)
\(h + k + l\)\(k, l\)\(h + l\)\(h + k\)\(h\)\(k\)\(l\)\(I(bc) – – \)\(Iem2\, _{(46)}\)
\( Ie2m\, _{(46)}\)
\(Iemm\, _{(74)}\)
\(h + k + l\)\(k, l\)\(h + l\)\(h, k\)\(h\)\(k\)\(l\)\(Ic – a\)\(Ic2a\, _{(45)}\)\(Icma\, _{(72)}\)
\(h + k + l\)\(k, l\)\(h, l\)\(h + k\)\(h\)\(k\)\(l\)\(Iba – \)\(Iba2\, _{(45)}\)\(Ibam\, _{(72)}\)
\(h + k + l\)\(k, l\)\(h, l\)\(h, k\)\(h\)\(k\)\(l\)\(Ibca\)\(Ibca\, _{(73)}\)
\(Icab\, _{(73)}\)
\(h + k, h + l, \)
\(k + l\)
\(k, l\)\(h, l\)\(h, k\)\(h\)\(k\)\(l\)\(F – – – \)\(F222\, _{(22)}\)\(Fmm2\, _{(42)}\)
\(Fm2m\, _{(42)}\)
\( F2mm\, _{(42)}\)
\(Fmmm\, _{(69)}\)
\(h + k, h + l,\)
\( k + l\)
\(k, l\)\(h+l=4n;\)
\( h, l\)
\(h+k=4n;\)
\( h, k\)
\(h = 4n\)\(k = 4n\)\(l = 4n\)\(F – dd\)\(F2dd\, _{(43)}\)
\(h + k, h + l, \)
\(k + l\)
\(k+l=4n; \)
\(k, l\)
\(h, l\)\(h+k = 4n;\)
\( h, k\)
\(h = 4n\)\(k = 4n\)\(l = 4n\)\(Fd – d\)\(Fd2d\, _{(43)}\)
\(h + k, h + l, \)
\(k + l\)
\(k+l=4n; \)
\(k, l\)
\(h+l=4n;\)
\( h, l\)
\(h, k\)\(h = 4n\)\(k = 4n\)\(l = 4n\)\(Fdd – \)\(Fdd2\, _{(43)}\)
\(h + k, h + l, \)
\(k + l\)
\(k+l=4n; \)
\(k, l\)
\(h+l=4n; \)
\(h, l\)
\(h+k=4n;\)
\( h, k\)
\(h = 4n\)\(k = 4n\)\(l = 4n\)\(Fddd\)\(Fddd\, _{(70)}\)

Tetragonal 正方晶系

Reflection conditionsExtinction
symbol
Laue class
\(4/m\)\(4/mmm\)
Point group
\(hkl\)\(hk0\)\(0kl\)\(hhl\)\(00l\)\(0kl\)\(hh0\)\(4\)\(\bar{4}\)\(4/m\)\(422\)\(4mm\)\(\bar{4}2m\),
\(\bar{4}m2\)
\(4/mmm\)
\(P – – – \)\(P4\, _{(75)}\)\(P\bar{4}\, _{(81)}\)\(P4/m\, _{(83)}\)\(P422\, _{(89)}\)\(P4mm\, _{(99)}\)\(P\bar{4}2m\, _{(111)}\)
\(P\bar{4}m2\, _{(115)}\)
\(P4/mnm\, _{(123)}\)
\(k\)\(P – 2_1 – \)\(P42_12\, _{(90)}\)\(P\bar{4}2_1m\, _{(113)}\)
\(l\)\(P4_2 – – \)\(P4_2\, _{(77)}\)\(P4_2/m\, _{(84)}\)\(P4_222\, _{(93)}\)
\(l\)\(k\)\(P4_22_1 – \)\(P4_22_12\, _{(94)}\)
\(l=\)
\(4n\)
\(P4_1 – – \)\(P4_1\, _{(76)}\)
\( P4_3\, _{(78)}\)
\(P4_122\, _{(91)}\)
\( P4_322\, _{(95)}\)
\(l=\)
\(4n\)
\(k\)\(P412_1 – \)\(P4_12_12\, _{(92)}\)
\( P4_32_12\, _{(96)}\)
\(l\)\(l\)\(P – – c\)\(P4_2mc\, _{(105)}\)\(P\bar{4}2c\, _{(112)}\)\(P4_2/mmc\, _{(131)}\)
\(l\)\(l\)\(k\)\(P – 2_1c\)\(P\bar{4}2_1c\, _{(114)}\)
\(k\)\(k\)\(P – b – \)\(P4bm\, _{(100)}\)\(P\bar{4}b2\, _{(117)}\)\(P4/mbm\, _{(127)}\)
\(k\)\(l\)\(l\)\(k\)\(P – be\)\(P4_2bc\, _{(106)}\)\(P4_2/mbc\, _{( 135)}\)
\(l\)\(l\)\(P – c – \)\(P4_2cm\, _{(101)}\)\(P\bar{4}c2\, _{(116)}\)\(P4_2/mcm\, _{( 132)}\)
\(l\)\(l\)\(l\)\(P – cc\)\(P4cc\, _{(103)}\)\(P4/mcc\, _{(124)}\)
\(k+l\)\(l\)\(k\)\(P – n – \)\(P4_2nm\, _{(102)}\)\(P\bar{4}n2\, _{(118)}\)\(P4_2/mnm\, _{(136)}\)
\(k+l\)\(l\)\(l\)\(k\)\(P – nc\)\(P4nc\, _{(104)}\)\(P4/mnc\, _{(128)}\)
\(h+k\)\(k\)\(Pn – – \)\(P4/n\, _{(85)}\)\(P4/nmm\, _{(129)}\)
\(h+k\)\(l\)\(k\)\(P4_2/n\)\(P4_2/n\, _{(86)}\)
\(h+k\)\(l\)\(l\)\(k\)\(Pn – c\)\(P4_2/mnc\, _{(137)}\)
\(h+k\)\(k\)\(k\)\(Pnb – \)\(P4/nbm\, _{(125)}\)
\(h+k\)\(k\)\(l\)\(l\)\(k\)\(Pnbc\)\(P4_2/nbc\, _{(133)}\)
\(h+k\)\(l\)\(l\)\(l\)\(k\)\(Pnc – \)\(P4_2/ncm\, _{(138)}\)
\(h+k\)\(l\)\(l\)\(l\)\(k\)\(Pncc\)\(P4/ncc\, _{(130)}\)
\(h+k\)\(k+l\)\(l\)\(k\)\(Pnn – \)\(P4_2/nnm\, _{(134)}\)
\(h+k\)\(k+l\)\(l\)\(l\)\(k\)\(Pnnc\)\(P4/nnc\, _{(126)}\)
\(h+k+l\)\(h+k\)\(k+l\)\(l\)\(l\)\(k\)\(I – – – \)\(I4\, _{(79)}\)\(I\bar{4}\, _{(82)}\)\(I4/m\, _{(87)}\)\(I422\, _{(97)}\)\(I4mm\, _{(107)}\)\(I\bar{4}2m\, _{(121)}\)
\(I\bar{4}m2\, _{(119)}\)
\(I4/mmm\, _{(139)}\)
\(h+k+l\)\(h+k\)\(k+l\)\(l\)\(l=\)
\(4n\)
\(k\)\(I4_1 – – \)\(I4_1\, _{(80)}\)\(I4_122\, _{(98)}\)
\(h+k+l\)\(h+k\)\(k+l\)\(l=\)
\(4n\)
\(k\)\(h\)\(I – – d\)\(I4_1md\, _{(109)}\)\(I\bar{4}2d\, _{(122)}\)
\(h+k+l\)\(h+k\)\(k, l\)\(l\)\(l\)\(k\)\(I – c – \)\(I4cm\, _{( 108)}\)\(I\bar{4}c2\, _{(120)}\)\(I4/mcm\, _{(140)}\)
\(h+k+l\)\(h+k\)\(k, l\)\(l=\)
\(4n\)
\(k\)\(h\)\(I – cd\)\(I4_1cd\, _{(110)}\)
\(h+k+l\)\(h, k\)\(k+l\)\(l\)\(l=\)
\(4n\)
\(k\)\(I4_1/a – – \)\(I4_1/a\, _{(88)}\)
\(h+k+l\)\(h, k\)\(k+l\)\(l=\)
\(4n\)
\(k\)\(h\)\(Ia – d\)\(I4_1/amd\, _{(141)}\)
\(h+k+l\)\(h, k\)\(k, l\)\(l=\)
\(4n\)
\(k\)\(h\)\(Iacd\)\(I4_1/acd\, _{(142)}\)

Trigonal 三方晶系

Hexagonal axes

Reflection conditionsExtinction
symbol
Laue class
\(\bar{3}\)\(\bar{3}m1\, (=\bar{3}\,2/m\,1), \bar{3}m\)\(\bar{3}1m\, (=\bar{3}\,1\, 2/m)\)
Point group
\(hkil\)\(hh0l\)\(h h \overline{2h} l\)\(000l\)\(3\)\(\bar{3}\)\(321\),
\(32\)
\(3m1\),
\(3m\)
\(\bar{3}m1\),
\(\bar{3}m\)
\(312\)\(31m\)\(\bar{3}1m\)
\(P – – – \)\(P3\, _{(143)}\)\(P\bar{3}\, _{(147)}\)\(P321\, _{(150)}\)\(P3m1\, _{(156)}\)\(P\bar{3}m1\, _{(164)}\)\(P312\, _{(149)}\)\(P31m\, _{(157)}\)\(P\bar{3}1m\, _{(162)}\)
\(l\)
\(=3n\)
\(P3_1 – – – \)\(P3_1\, _{(144)}\)
\(P3_2\, _{(145)}\)
\(P3_121\, _{(152)}\)
\( P3_221\, _{(154)}\)
\(P3_112\, _{(151)}\)
\( P3_212\, _{(153)}\)
\(l\)\(l\)\(P – – c\)\(P31c\, _{(159)}\)\(P\bar{3}1c\, _{(163)}\)
\(l\)\(l\)\(P – c – \)\(P3c1\, _{(158)}\)\(P\bar{3}c1\, _{(165)}\)
\( -h+k+l\)
\(=3n\)
\(h+l\)
\(=3n\)
\(l\)
\(=3n\)
\(l\)
\(=3n\)
\(R(obv) – – \)\(R3\, _{(146)}\)\(R\bar{3}\, _{(148)}\)\(R32\, _{(155)}\)\(R3m\, _{(160)}\)\(R\bar{3}m\, _{(166)}\)
\( -h+k+l\)
\(=3n\)
\(h+l\)
\(=3n; l\)
\(l\)
\(=3n\)
\(l\)
\(=6n\)
\(R(obv) – c\)\(R3c\, _{(161)}\)\(R\bar{3}c\, _{(167)}\)
\(h- k+l\)
\(=3n\)
\( -h+l\)
\(=3n\)
\(l\)
\(=3n\)
\(l\)
\(=3n\)
\(R(rev) – – \)\(R3\, _{(146)}\)\(R\bar{3}\, _{(148)}\)\(R32\, _{(155)}\, \) \(R3m\, _{(160)}\)\(R\bar{3}m\, _{(166)}\)
\(h- k+l\)
\(=3n\)
\( -h+l\)
\(=3n; l\)
\(l\)
\(=3n\)
\(l\)
\(=3n\)
\(R(rev) – c\)\(R3c\, _{(161)}\)\(R\bar{3}c\, _{(167)}\)

Rhombohedral axes

Reflection conditionsExtinction
symbol
Point group
\(hkl\)\(hhl\)\(hhh\)\(3\)\(\bar{3}\)\(32\)\(3m\)\(\bar{3}m\)
\(R – – \)\(R3\, _{(146)}\)\(R\bar{3}\, _{(148)}\)\(R32\, _{(155)}\) \(R3m\, _{(160)}\)\(R\bar{3}m\, _{(166)}\)
\(l\)\(h\)\(R – c – \)\(R3c\, _{(161)}\)\(R\bar{3}c\, _{(167)}\)

Hexagonal 六方晶系

Reflection conditionsExtinction
symbol
Laue class
\(6/m\)\(6/mmm\)
Point group
\(hh0l\)\(hh2hl\)\(000l\)\(6\)\(\bar{6}\)\(6/m\)\(622\)\(6mm\)\(\bar{6}2m\)\(6/mmm\)
\(\bar{6}m2\)
\(P – – – \)\(P6\, _{(168)}\)\(P\bar{6}\, _{(174)}\)\(P6/m\, _{(175)}\)\(P622\, _{(177)}\)\(P6mm\, _{(183)}\)\(P\bar{6}2m\, _{(189)}\)\(P6/mmm\, _{(191)}\)
\(P\bar{6}m2\, _{(187)}\)
\(l\)\(P6_3 – – \)\(P6_3\, _{(173)}\)\(P6_3/m\, _{(176)}\)\(P6_322\, _{(182)}\)
\(l=3n\)\(P6_2 – – \)\(P6_2\, _{(171)}\)\(P6_222\, _{(180)}\)
\(P6_4\, _{(172)}\)\(P6_422\, _{(181)}\)
\(l=6n\)\(P6_1 – – \)\(P6_1\, _{(169)}\)\(P6_122\, _{(178)}\)
\(P6_5\, _{(170)}\)\(P6_522\, _{(179)}\)
\(l\)\(l\)\(P – – c\)\(P6_3mc\, _{(186)}\)\(P\bar{6}2c\, _{(190)}\)\(P6_3/nmc\, _{(194)}\)
\(l\)\(l\)\(P – c – \)\(P6_3cm\, _{(185)}\)\(P\bar{6}c2\, _{(188)}\)\(P6_3/mcm\, _{(193)}\)
\(l\)\(l\)\(l\)\(P – cc\)\(P6cc\, _{(184)}\)\(P6/mcc\, _{(192)}\)

Cubic 立方晶系

Reflection conditions Extinction
symbol
Laue class
\(m3\)\(m3m\)
Point group
\(hkl\)\(0kl\)\(hhl\)\(00l\)\(23\)\(m\bar{3}\)\(432\)\(\bar{4}3m\)\(m\bar{3}m\)
\(P – – – \) \(P23\, _{(195)}\) \(Pm\bar{3}\, _{(200)}\) \(P432\, _{(207)}\) \(P\bar{4}3m\, _{(215)}\) \(Pm\bar{3}m\, _{(221)}\)
\(l\) \(P2_1 – -\)
\(P4_2 – -\)
\(P2_13\, _{(198)}\) \(P4_232\, _{(208)}\)
\(l=4n\) \(P4_1 – – \) \(P4_132\, _{(213)}\)
\(P4_332\, _{(212)}\)
\(l\)\(l\) \(P – – n\) \(P\bar{4}3n\, _{(218)}\) \(Pm\bar{3}n\, _{(223)}\)
\(k\)\(l\) \(Pa – – \) \(Pa\bar{3}\, _{(205)}\)
\(k+l\)\(l\) \(Pn – – \) \(Pn\bar{3}\, _{(201)}\) \(Pn\bar{3}m\, _{(224)}\)
\(k+l\)\(l\)\(l\) \(Pn – n\) \(Pn\bar{3}n\, _{(222)}\)
\(h+k+l\)\(k+l\)\(l\)\(l\) \(I – – – \) \(I23\, _{(197)}\)
\(I2_13\, _{(199)}\)
\(Im\bar{3}\, _{(204)}\) \(I432\, _{(211)}\) \(I\bar{4}3m\, _{(217)}\) \(Im\bar{3}m\, _{(229)}\)
\(h+k+l\)\(k+l\)\(l\)\(l=4n\) \(I4_1- -\) \(I4_132\, _{(214)}\)
\(h+k+l\)\(k+l\)\(2h+l=4n, l\)\(l=4n\) \(I – – d\) \(I\bar{4}3d\, _{(220)}\)
\(h+k+l\)\(k, l\)\(l\)\(l\) \(la – – \) \(Ia\bar{3}\, _{(206)}\)
\(h+k+l\) \(k, l\) \(2h+l=4n, l\)\(l=4n\) \(Ia – d\) \(Ia\bar{3}d\, _{(230)}\)
\(h+k, h+l,\)
\( k+l\)
\(k, l\)\(h+l\)\(l\)\(F\) \(F23\, _{(196)}\) \(Fm\bar{3}\, _{(202)}\) \(F432\, _{(209)}\) \(F\bar{4}3m\, _{(216)}\) \(Fm\bar{3}m\, _{(225)}\)
\(h+k, h+l,\)
\( k+l\)
\(k, l\)\(h+l\)\(l=4n\) \(F4_1 – – \) \(F4_132\, _{(210)}\)
\(h+k, h+l,\)
\( k+l\)
\(k, l\)\(h, l\)\(l\) \(F – – c\) \(F\bar{4}3c\, _{(219)}\) \(Fm\bar{3}c\, _{(226)}\)
\(h+k, h+l, \)
\(k+l\)
\(k+l=4n;\)
\(k, l\)
\(h+l\)\(l=4n\) \(Fd – – \) \(Fd\bar{3}\, _{(203)}\) \(Fd\bar{3}m\, _{(227)}\)
\(h+k, h+l, \)
\(k+l\)
\(k+l=4n;\)
\(k, l\)
\(h, l\)\(l=4n\)\(Fd-c\) \(Fd\bar{3}c\, _{(228)}\)
  1. これはX線や中性子線のような、散乱能が小さく試料中で高々1回程度しか散乱が起きないような入射波を使った場合に成立します。電子線のような散乱能の大きい波を用いた場合、複合格子並進に由来する出現則/消滅則は満たすものの、らせん・映進に由来する出現則/消滅則は満たされません。 ↩︎
contents