Space group |
Space group No. |
Multiplicity |
Wyckoff Letter |
Site Symmetry |
Position |
P 1 |
1 |
|
|
|
|
|
|
|
|
|
1 |
a |
1 |
(x,y,z) |
|
|
|
P -1 |
2 |
|
|
|
|
|
|
|
|
|
2 |
i |
1 |
(x,y,z) |
(-x,-y,-z) |
|
|
|
|
1 |
h |
-1 |
(1/2,1/2,1/2) |
|
|
|
|
|
1 |
g |
-1 |
(0,1/2,1/2) |
|
|
|
|
|
1 |
f |
-1 |
(1/2,0,1/2) |
|
|
|
|
|
1 |
e |
-1 |
(1/2,1/2,0) |
|
|
|
|
|
1 |
d |
-1 |
(1/2,0,0) |
|
|
|
|
|
1 |
c |
-1 |
(0,1/2,0) |
|
|
|
|
|
1 |
b |
-1 |
(0,0,1/2) |
|
|
|
|
|
1 |
a |
-1 |
(0,0,0) |
|
|
|
P 1 2 1 |
3 |
|
|
|
|
|
|
|
|
|
2 |
e |
1 |
(x,y,z) |
(-x,y,-z) |
|
|
|
|
1 |
d |
2 |
(1/2,y,1/2) |
|
|
|
|
|
1 |
c |
2 |
(1/2,y,0) |
|
|
|
|
|
1 |
b |
2 |
(0,y,1/2) |
|
|
|
|
|
1 |
a |
2 |
(0,y,0) |
|
|
|
P 1 1 2 |
4 |
|
|
|
|
|
|
|
|
|
2 |
e |
1 |
(x,y,z) |
(-x,-y,z) |
|
|
|
|
1 |
d |
2 |
(1/2,1/2,z) |
|
|
|
|
|
1 |
c |
2 |
(0,1/2,z) |
|
|
|
|
|
1 |
b |
2 |
(1/2,0,z) |
|
|
|
|
|
1 |
a |
2 |
(0,0,z) |
|
|
|
P 2 1 1 |
5 |
|
|
|
|
|
|
|
|
|
2 |
e |
1 |
(x,y,z) |
(x,-y,-z) |
|
|
|
|
1 |
d |
2 |
(x,1/2,1/2) |
|
|
|
|
|
1 |
c |
2 |
(x,0,1/2) |
|
|
|
|
|
1 |
b |
2 |
(x,1/2,0) |
|
|
|
|
|
1 |
a |
2 |
(x,0,0) |
|
|
|
P 1 2sub1 1 |
6 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(-x,y+1/2,-z) |
|
|
P 1 1 2sub1 |
7 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(-x,-y,z+1/2) |
|
|
P 2sub1 1 1 |
8 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(x+1/2,-y,-z) |
|
|
C 1 2 1 |
9 |
|
|
|
|
|
|
|
|
|
4 |
c |
1 |
(x,y,z) |
(-x,y,-z) |
|
|
|
|
2 |
b |
2 |
(0,y,1/2) |
|
|
|
|
|
2 |
a |
2 |
(0,y,0) |
|
|
|
A 1 2 1 |
10 |
|
|
|
|
|
|
|
|
|
4 |
c |
1 |
(x,y,z) |
(-x,y,-z) |
|
|
|
|
2 |
b |
2 |
(1/2,y,0) |
|
|
|
|
|
2 |
a |
2 |
(0,y,0) |
|
|
|
I 1 2 1 |
11 |
|
|
|
|
|
|
|
|
|
4 |
c |
1 |
(x,y,z) |
(-x,y,-z) |
|
|
|
|
2 |
b |
2 |
(1/2,y,0) |
|
|
|
|
|
2 |
a |
2 |
(0,y,0) |
|
|
|
A 1 1 2 |
12 |
|
|
|
|
|
|
|
|
|
4 |
c |
1 |
(x,y,z) |
(-x,-y,z) |
|
|
|
|
2 |
b |
2 |
(1/2,0,z) |
|
|
|
|
|
2 |
a |
2 |
(0,0,z) |
|
|
|
B 1 1 2 |
13 |
|
|
|
|
|
|
|
|
|
4 |
c |
1 |
(x,y,z) |
(-x,-y,z) |
|
|
|
|
2 |
b |
2 |
(0,1/2,z) |
|
|
|
|
|
2 |
a |
2 |
(0,0,z) |
|
|
|
I 1 1 2 |
14 |
|
|
|
|
|
|
|
|
|
4 |
c |
1 |
(x,y,z) |
(-x,-y,z) |
|
|
|
|
2 |
b |
2 |
(0,1/2,z) |
|
|
|
|
|
2 |
a |
2 |
(0,0,z) |
|
|
|
B 2 1 1 |
15 |
|
|
|
|
|
|
|
|
|
4 |
c |
1 |
(x,y,z) |
(x,-y,-z) |
|
|
|
|
2 |
b |
2 |
(x,1/2,0) |
|
|
|
|
|
2 |
a |
2 |
(x,0,0) |
|
|
|
C 2 1 1 |
16 |
|
|
|
|
|
|
|
|
|
4 |
c |
1 |
(x,y,z) |
(x,-y,-z) |
|
|
|
|
2 |
b |
2 |
(x,0,1/2) |
|
|
|
|
|
2 |
a |
2 |
(x,0,0) |
|
|
|
I 2 1 1 |
17 |
|
|
|
|
|
|
|
|
|
4 |
c |
1 |
(x,y,z) |
(x,-y,-z) |
|
|
|
|
2 |
b |
2 |
(x,0,1/2) |
|
|
|
|
|
2 |
a |
2 |
(x,0,0) |
|
|
|
P 1 m 1 |
18 |
|
|
|
|
|
|
|
|
|
2 |
c |
1 |
(x,y,z) |
(x,-y,z) |
|
|
|
|
1 |
b |
m |
(x,1/2,z) |
|
|
|
|
|
1 |
a |
m |
(x,0,z) |
|
|
|
P 1 1 m |
19 |
|
|
|
|
|
|
|
|
|
2 |
c |
1 |
(x,y,z) |
(x,y,-z) |
|
|
|
|
1 |
b |
m |
(x,y,1/2) |
|
|
|
|
|
1 |
a |
m |
(x,y,0) |
|
|
|
P m 1 1 |
20 |
|
|
|
|
|
|
|
|
|
2 |
c |
1 |
(x,y,z) |
(-x,y,z) |
|
|
|
|
1 |
b |
m |
(1/2,y,z) |
|
|
|
|
|
1 |
a |
m |
(0,y,z) |
|
|
|
P 1 c 1 |
21 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(x,-y,z+1/2) |
|
|
P 1 n 1 |
22 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(x+1/2,-y,z+1/2) |
|
|
P 1 a 1 |
23 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(x+1/2,-y,z) |
|
|
P 1 1 a |
24 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(x+1/2,y,-z) |
|
|
P 1 1 n |
25 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(x+1/2,y+1/2,-z) |
|
|
P 1 1 b |
26 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(-x,y,z+1/2) |
|
|
P b 1 1 |
27 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(-x,y+1/2,z) |
|
|
P n 1 1 |
28 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(-x,y+1/2,z+1/2) |
|
|
P c 1 1 |
29 |
|
|
|
|
|
|
|
|
|
2 |
a |
1 |
(x,y,z) |
(-x,y,z+1/2) |
|
|
C 1 m 1 |
30 |
|
|
|
|
|
|
|
|
|
4 |
b |
1 |
(x,y,z) |
(x,-y,z) |
|
|
|
|
2 |
a |
m |
(x,0,z) |
|
|
|
A 1 m 1 |
31 |
|
|
|
|
|
|
|
|
|
4 |
b |
1 |
(x,y,z) |
(x,-y,z) |
|
|
|
|
2 |
a |
m |
(x,0,z) |
|
|
|
I 1 m 1 |
32 |
|
|
|
|
|
|
|
|
|
4 |
b |
1 |
(x,y,z) |
(x,-y,z) |
|
|
|
|
2 |
a |
m |
(x,0,z) |
|
|
|
A 1 1 m |
33 |
|
|
|
|
|
|
|
|
|
4 |
b |
1 |
(x,y,z) |
(x,y,-z) |
|
|
|
|
2 |
a |
m |
(x,y,0) |
|
|
|
B 1 1 m |
34 |
|
|
|
|
|
|
|
|
|
4 |
b |
1 |
(x,y,z) |
(x,y,-z) |
|
|
|
|
2 |
a |
m |
(x,y,0) |
|
|
|
I 1 1 m |
35 |
|
|
|
|
|
|
|
|
|
4 |
b |
1 |
(x,y,z) |
(x,y,-z) |
|
|
|
|
2 |
a |
m |
(x,y,0) |
|
|
|
B m 1 1 |
36 |
|
|
|
|
|
|
|
|
|
4 |
b |
1 |
(x,y,z) |
(-x,y,z) |
|
|
|
|
2 |
a |
m |
(0,y,z) |
|
|
|
C m 1 1 |
37 |
|
|
|
|
|
|
|
|
|
4 |
b |
1 |
(x,y,z) |
(-x,y,z) |
|
|
|
|
2 |
a |
m |
(0,y,z) |
|
|
|
I m 1 1 |
38 |
|
|
|
|
|
|
|
|
|
4 |
b |
1 |
(x,y,z) |
(-x,y,z) |
|
|
|
|
2 |
a |
m |
(0,y,z) |
|
|
|
C 1 c 1 |
39 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x,-y,z+1/2) |
|
|
A 1 n 1 |
40 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x+1/2,-y,z+1/2) |
|
|
I 1 a 1 |
41 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x+1/2,-y,z) |
|
|
A 1 a 1 |
42 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x+1/2,-y,z) |
|
|
C 1 n 1 |
43 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x+1/2,-y,z+1/2) |
|
|
I 1 c 1 |
44 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x,-y,z+1/2) |
|
|
A 1 1 a |
45 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x+1/2,y,-z) |
|
|
B 1 1 n |
46 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x+1/2,y+1/2,-z) |
|
|
I 1 1 b |
47 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x,y+1/2,-z) |
|
|
B 1 1 b |
48 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x,y+1/2,-z) |
|
|
A 1 1 n |
49 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x+1/2,y+1/2,-z) |
|
|
I 1 1 a |
50 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(x+1/2,y,-z) |
|
|
B b 1 1 |
51 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(-x,y+1/2,z) |
|
|
C n 1 1 |
52 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(-x,y+1/2,z+1/2) |
|
|
I c 1 1 |
53 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(-x,y,z+1/2) |
|
|
C c 1 1 |
54 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(-x,y,z+1/2) |
|
|
B n 1 1 |
55 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(-x,y+1/2,z+1/2) |
|
|
I b 1 1 |
56 |
|
|
|
|
|
|
|
|
|
4 |
a |
1 |
(x,y,z) |
(-x,y+1/2,z) |
|
|
P 1 2/m 1 |
57 |
|
|
|
|
|
|
|
|
|
4 |
o |
1 |
(x,y,z) |
(-x,y,-z) |
(-x,-y,-z) |
(x,-y,z) |
|
|
2 |
n |
m |
(x,1/2,z) |
(-x,1/2,-z) |
|
|
|
|
2 |
m |
m |
(x,0,z) |
(-x,0,-z) |
|
|
|
|
2 |
l |
2 |
(1/2,y,1/2) |
(1/2,-y,1/2) |
|
|
|
|
2 |
k |
2 |
(0,y,1/2) |
(0,-y,1/2) |
|
|
|
|
2 |
j |
2 |
(1/2,y,0) |
(1/2,-y,0) |
|
|
|
|
2 |
i |
2 |
(0,y,0) |
(0,-y,0) |
|
|
|
|
1 |
h |
2/m |
(1/2,1/2,1/2) |
|
|
|
|
|
1 |
g |
2/m |
(1/2,0,1/2) |
|
|
|
|
|
1 |
f |
2/m |
(0,1/2,1/2) |
|
|
|
|
|
1 |
e |
2/m |
(1/2,1/2,0) |
|
|
|
|
|
1 |
d |
2/m |
(1/2,0,0) |
|
|
|
|
|
1 |
c |
2/m |
(0,0,1/2) |
|
|
|
|
|
1 |
b |
2/m |
(0,1/2,0) |
|
|
|
|
|
1 |
a |
2/m |
(0,0,0) |
|
|
|
P 1 1 2/m |
58 |
|
|
|
|
|
|
|
|
|
4 |
o |
1 |
(x,y,z) |
(-x,-y,z) |
(-x,-y,-z) |
(x,y,-z) |
|
|
2 |
n |
m |
(x,y,1/2) |
(-x,-y,1/2) |
|
|
|
|
2 |
m |
m |
(x,y,0) |
(-x,-y,0) |
|
|
|
|
2 |
l |
2 |
(1/2,1/2,z) |
(1/2,1/2,-z) |
|
|
|
|
2 |
k |
2 |
(1/2,0,z) |
(1/2,0,-z) |
|
|
|
|
2 |
j |
2 |
(0,1/2,z) |
(0,1/2,-z) |
|
|
|
|
2 |
i |
2 |
(0,0,z) |
(0,0,-z) |
|
|
|
|
1 |
h |
2/m |
(1/2,1/2,1/2) |
|
|
|
|
|
1 |
g |
2/m |
(1/2,1/2,0) |
|
|
|
|
|
1 |
f |
2/m |
(1/2,0,1/2) |
|
|
|
|
|
1 |
e |
2/m |
(0,1/2,1/2) |
|
|
|
|
|
1 |
d |
2/m |
(0,1/2,0) |
|
|
|
|
|
1 |
c |
2/m |
(1/2,0,0) |
|
|
|
|
|
1 |
b |
2/m |
(0,0,1/2) |
|
|
|
|
|
1 |
a |
2/m |
(0,0,0) |
|
|
|
P 2/m 1 1 |
59 |
|
|
|
|
|
|
|
|
|
4 |
o |
1 |
(x,y,z) |
(x,-y,-z) |
(-x,-y,-z) |
(-x,y,z) |
|
|
2 |
n |
m |
(1/2,y,z) |
(1/2,-y,-z) |
|
|
|
|
2 |
m |
m |
(0,y,z) |
(0,-y,-z) |
|
|
|
|
2 |
l |
2 |
(x,1/2,1/2) |
(-x,1/2,1/2) |
|
|
|
|
2 |
k |
2 |
(x,1/2,0) |
(-x,1/2,0) |
|
|
|
|
2 |
j |
2 |
(x,0,1/2) |
(-x,0,1/2) |
|
|
|
|
2 |
i |
2 |
(x,0,0) |
(-x,0,0) |
|
|
|
|
1 |
h |
2/m |
(1/2,1/2,1/2) |
|
|
|
|
|
1 |
g |
2/m |
(0,1/2,1/2) |
|
|
|
|
|
1 |
f |
2/m |
(1/2,1/2,0) |
|
|
|
|
|
1 |
e |
2/m |
(1/2,0,1/2) |
|
|
|
|
|
1 |
d |
2/m |
(0,0,1/2) |
|
|
|
|
|
1 |
c |
2/m |
(0,1/2,0) |
|
|
|
|
|
1 |
b |
2/m |
(1/2,0,0) |
|
|
|
|
|
1 |
a |
2/m |
(0,0,0) |
|
|
|
P 1 2sub1/m 1 |
60 |
|
|
|
|
|
|
|
|
|
4 |
f |
1 |
(x,y,z) |
(-x,y+1/2,-z) |
(-x,-y,-z) |
(x,-y+1/2,z) |
|
|
2 |
e |
m |
(x,1/4,z) |
(-x,3/4,-z) |
|
|
|
|
2 |
d |
-1 |
(1/2,0,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
c |
-1 |
(0,0,1/2) |
(0,1/2,1/2) |
|
|
|
|
2 |
b |
-1 |
(1/2,0,0) |
(1/2,1/2,0) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(0,1/2,0) |
|
|
P 1 1 2sub1/m |
61 |
|
|
|
|
|
|
|
|
|
4 |
f |
1 |
(x,y,z) |
(-x,-y,z+1/2) |
(-x,-y,-z) |
(x,y,-z+1/2) |
|
|
2 |
e |
m |
(x,y,1/4) |
(-x,-y,3/4) |
|
|
|
|
2 |
d |
-1 |
(1/2,1/2,0) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
c |
-1 |
(1/2,0,0) |
(1/2,0,1/2) |
|
|
|
|
2 |
b |
-1 |
(0,1/2,0) |
(0,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(0,0,1/2) |
|
|
P 2sub1/m 1 1 |
62 |
|
|
|
|
|
|
|
|
|
4 |
f |
1 |
(x,y,z) |
(x+1/2,-y,-z) |
(-x,-y,-z) |
(-x+1/2,y,z) |
|
|
2 |
e |
m |
(1/4,y,z) |
(3/4,-y,-z) |
|
|
|
|
2 |
d |
-1 |
(0,1/2,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
c |
-1 |
(0,1/2,0) |
(1/2,1/2,0) |
|
|
|
|
2 |
b |
-1 |
(0,0,1/2) |
(1/2,0,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,0,0) |
|
|
C 1 2/m 1 |
63 |
|
|
|
|
|
|
|
|
|
8 |
j |
1 |
(x,y,z) |
(-x,y,-z) |
(-x,-y,-z) |
(x,-y,z) |
|
|
4 |
i |
m |
(x,0,z) |
(-x,0,-z) |
|
|
|
|
4 |
h |
2 |
(0,y,1/2) |
(0,-y,1/2) |
|
|
|
|
4 |
g |
2 |
(0,y,0) |
(0,-y,0) |
|
|
|
|
4 |
f |
-1 |
(1/4,1/4,1/2) |
(3/4,1/4,1/2) |
|
|
|
|
4 |
e |
-1 |
(1/4,1/4,0) |
(3/4,1/4,0) |
|
|
|
|
2 |
d |
2/m |
(0,1/2,1/2) |
|
|
|
|
|
2 |
c |
2/m |
(0,0,1/2) |
|
|
|
|
|
2 |
b |
2/m |
(0,1/2,0) |
|
|
|
|
|
2 |
a |
2/m |
(0,0,0) |
|
|
|
A 1 2/m 1 |
64 |
|
|
|
|
|
|
|
|
|
8 |
j |
1 |
(x,y,z) |
(-x,y,-z) |
(-x,-y,-z) |
(x,-y,z) |
|
|
4 |
i |
m |
(x,0,z) |
(-x,0,-z) |
|
|
|
|
4 |
h |
2 |
(1/2,y,0) |
(1/2,-y,0) |
|
|
|
|
4 |
g |
2 |
(0,y,0) |
(0,-y,0) |
|
|
|
|
4 |
f |
-1 |
(1/2,1/4,1/4) |
(1/2,1/4,3/4) |
|
|
|
|
4 |
e |
-1 |
(0,1/4,1/4) |
(0,1/4,3/4) |
|
|
|
|
2 |
d |
2/m |
(1/2,1/2,0) |
|
|
|
|
|
2 |
c |
2/m |
(1/2,0,0) |
|
|
|
|
|
2 |
b |
2/m |
(0,1/2,0) |
|
|
|
|
|
2 |
a |
2/m |
(0,0,0) |
|
|
|
I 1 2/m 1 |
65 |
|
|
|
|
|
|
|
|
|
8 |
j |
1 |
(x,y,z) |
(-x,y,-z) |
(-x,-y,-z) |
(x,-y,z) |
|
|
4 |
i |
m |
(x,0,z) |
(-x,0,-z) |
|
|
|
|
4 |
h |
2 |
(0,y,1/2) |
(0,-y,1/2) |
|
|
|
|
4 |
g |
2 |
(0,y,0) |
(0,-y,0) |
|
|
|
|
4 |
f |
-1 |
(1/4,1/4,3/4) |
(3/4,1/4,1/4) |
|
|
|
|
4 |
e |
-1 |
(1/4,1/4,1/4) |
(3/4,1/4,3/4) |
|
|
|
|
2 |
d |
2/m |
(0,1/2,1/2) |
|
|
|
|
|
2 |
c |
2/m |
(0,0,1/2) |
|
|
|
|
|
2 |
b |
2/m |
(0,1/2,0) |
|
|
|
|
|
2 |
a |
2/m |
(0,0,0) |
|
|
|
A 1 1 2/m |
66 |
|
|
|
|
|
|
|
|
|
8 |
j |
1 |
(x,y,z) |
(-x,-y,z) |
(-x,-y,-z) |
(x,y,-z) |
|
|
4 |
i |
m |
(x,y,0) |
(-x,-y,0) |
|
|
|
|
4 |
h |
2 |
(1/2,0,z) |
(1/2,0,-z) |
|
|
|
|
4 |
g |
2 |
(0,0,z) |
(0,0,-z) |
|
|
|
|
4 |
f |
-1 |
(1/2,1/4,1/4) |
(1/2,3/4,1/4) |
|
|
|
|
4 |
e |
-1 |
(0,1/4,1/4) |
(0,3/4,1/4) |
|
|
|
|
2 |
d |
2/m |
(1/2,0,1/2) |
|
|
|
|
|
2 |
c |
2/m |
(1/2,0,0) |
|
|
|
|
|
2 |
b |
2/m |
(0,0,1/2) |
|
|
|
|
|
2 |
a |
2/m |
(0,0,0) |
|
|
|
B 1 1 2/m |
67 |
|
|
|
|
|
|
|
|
|
8 |
j |
1 |
(x,y,z) |
(-x,-y,z) |
(-x,-y,-z) |
(x,y,-z) |
|
|
4 |
i |
m |
(x,y,0) |
(-x,-y,0) |
|
|
|
|
4 |
h |
2 |
(0,1/2,z) |
(0,1/2,-z) |
|
|
|
|
4 |
g |
2 |
(0,0,z) |
(0,0,-z) |
|
|
|
|
4 |
f |
-1 |
(1/4,1/2,1/4) |
(3/4,1/2,1/4) |
|
|
|
|
4 |
e |
-1 |
(1/4,0,1/4) |
(3/4,0,1/4) |
|
|
|
|
2 |
d |
2/m |
(0,1/2,1/2) |
|
|
|
|
|
2 |
c |
2/m |
(0,1/2,0) |
|
|
|
|
|
2 |
b |
2/m |
(0,0,1/2) |
|
|
|
|
|
2 |
a |
2/m |
(0,0,0) |
|
|
|
I 1 1 2/m |
68 |
|
|
|
|
|
|
|
|
|
8 |
j |
1 |
(x,y,z) |
(-x,-y,z) |
(-x,-y,-z) |
(x,y,-z) |
|
|
4 |
i |
m |
(x,y,0) |
(-x,-y,0) |
|
|
|
|
4 |
h |
2 |
(1/2,0,z) |
(1/2,0,-z) |
|
|
|
|
4 |
g |
2 |
(0,0,z) |
(0,0,-z) |
|
|
|
|
4 |
f |
-1 |
(3/4,1/4,1/4) |
(1/4,3/4,1/4) |
|
|
|
|
4 |
e |
-1 |
(1/4,1/4,1/4) |
(3/4,3/4,1/4) |
|
|
|
|
2 |
d |
2/m |
(1/2,0,1/2) |
|
|
|
|
|
2 |
c |
2/m |
(1/2,0,0) |
|
|
|
|
|
2 |
b |
2/m |
(0,0,1/2) |
|
|
|
|
|
2 |
a |
2/m |
(0,0,0) |
|
|
|
B 2/m 1 1 |
69 |
|
|
|
|
|
|
|
|
|
8 |
j |
1 |
(x,y,z) |
(x,-y,-z) |
(-x,-y,-z) |
(-x,y,z) |
|
|
4 |
i |
m |
(0,y,z) |
(0,-y,-z) |
|
|
|
|
4 |
h |
2 |
(x,1/2,0) |
(-x,1/2,0) |
|
|
|
|
4 |
g |
2 |
(x,0,0) |
(-x,0,0) |
|
|
|
|
4 |
f |
-1 |
(1/4,1/2,1/4) |
(1/4,1/2,3/4) |
|
|
|
|
4 |
e |
-1 |
(1/4,0,1/4) |
(1/4,0,3/4) |
|
|
|
|
2 |
d |
2/m |
(1/2,1/2,0) |
|
|
|
|
|
2 |
c |
2/m |
(0,1/2,0) |
|
|
|
|
|
2 |
b |
2/m |
(1/2,0,0) |
|
|
|
|
|
2 |
a |
2/m |
(0,0,0) |
|
|
|
C 2/m 1 1 |
70 |
|
|
|
|
|
|
|
|
|
8 |
j |
1 |
(x,y,z) |
(x,-y,-z) |
(-x,-y,-z) |
(-x,y,z) |
|
|
4 |
i |
m |
(0,y,z) |
(0,-y,-z) |
|
|
|
|
4 |
h |
2 |
(x,0,1/2) |
(-x,0,1/2) |
|
|
|
|
4 |
g |
2 |
(x,0,0) |
(-x,0,0) |
|
|
|
|
4 |
f |
-1 |
(1/4,1/4,1/2) |
(1/4,3/4,1/2) |
|
|
|
|
4 |
e |
-1 |
(1/4,1/4,0) |
(1/4,3/4,0) |
|
|
|
|
2 |
d |
2/m |
(1/2,0,1/2) |
|
|
|
|
|
2 |
c |
2/m |
(0,0,1/2) |
|
|
|
|
|
2 |
b |
2/m |
(1/2,0,0) |
|
|
|
|
|
2 |
a |
2/m |
(0,0,0) |
|
|
|
I 2/m 1 1 |
71 |
|
|
|
|
|
|
|
|
|
8 |
j |
1 |
(x,y,z) |
(x,-y,-z) |
(-x,-y,-z) |
(-x,y,z) |
|
|
4 |
i |
m |
(0,y,z) |
(0,-y,-z) |
|
|
|
|
4 |
h |
2 |
(x,1/2,0) |
(-x,1/2,0) |
|
|
|
|
4 |
g |
2 |
(x,0,0) |
(-x,0,0) |
|
|
|
|
4 |
f |
-1 |
(1/4,3/4,1/4) |
(1/4,1/4,3/4) |
|
|
|
|
4 |
e |
-1 |
(1/4,1/4,1/4) |
(1/4,3/4,3/4) |
|
|
|
|
2 |
d |
2/m |
(1/2,1/2,0) |
|
|
|
|
|
2 |
c |
2/m |
(0,1/2,0) |
|
|
|
|
|
2 |
b |
2/m |
(1/2,0,0) |
|
|
|
|
|
2 |
a |
2/m |
(0,0,0) |
|
|
|
P 1 2/c 1 |
72 |
|
|
|
|
|
|
|
|
|
4 |
g |
1 |
(x,y,z) |
(-x,y,-z+1/2) |
(-x,-y,-z) |
(x,-y,z+1/2) |
|
|
2 |
f |
2 |
(1/2,y,1/4) |
(1/2,-y,3/4) |
|
|
|
|
2 |
e |
2 |
(0,y,1/4) |
(0,-y,3/4) |
|
|
|
|
2 |
d |
-1 |
(1/2,0,0) |
(1/2,0,1/2) |
|
|
|
|
2 |
c |
-1 |
(0,1/2,0) |
(0,1/2,1/2) |
|
|
|
|
2 |
b |
-1 |
(1/2,1/2,0) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(0,0,1/2) |
|
|
P 1 2/n 1 |
73 |
|
|
|
|
|
|
|
|
|
4 |
g |
1 |
(x,y,z) |
(-x+1/2,y,-z+1/2) |
(-x,-y,-z) |
(x+1/2,-y,z+1/2) |
|
|
2 |
f |
2 |
(3/4,y,1/4) |
(1/4,-y,3/4) |
|
|
|
|
2 |
e |
2 |
(1/4,y,1/4) |
(3/4,-y,3/4) |
|
|
|
|
2 |
d |
-1 |
(1/2,0,0) |
(0,0,1/2) |
|
|
|
|
2 |
c |
-1 |
(0,1/2,0) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
b |
-1 |
(1/2,1/2,0) |
(0,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,0,1/2) |
|
|
P 1 2/a 1 |
74 |
|
|
|
|
|
|
|
|
|
4 |
g |
1 |
(x,y,z) |
(-x+1/2,y,-z) |
(-x,-y,-z) |
(x+1/2,-y,z) |
|
|
2 |
f |
2 |
(3/4,y,1/2) |
(1/4,-y,1/2) |
|
|
|
|
2 |
e |
2 |
(3/4,y,0) |
(1/4,-y,0) |
|
|
|
|
2 |
d |
-1 |
(0,0,1/2) |
(1/2,0,1/2) |
|
|
|
|
2 |
c |
-1 |
(0,1/2,0) |
(1/2,1/2,0) |
|
|
|
|
2 |
b |
-1 |
(0,1/2,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,0,0) |
|
|
P 1 1 2/a |
75 |
|
|
|
|
|
|
|
|
|
4 |
g |
1 |
(x,y,z) |
(-x+1/2,-y,z) |
(-x,-y,-z) |
(x+1/2,y,-z) |
|
|
2 |
f |
2 |
(1/4,1/2,z) |
(3/4,1/2,-z) |
|
|
|
|
2 |
e |
2 |
(1/4,0,z) |
(3/4,0,-z) |
|
|
|
|
2 |
d |
-1 |
(0,1/2,0) |
(1/2,1/2,0) |
|
|
|
|
2 |
c |
-1 |
(0,0,1/2) |
(1/2,0,1/2) |
|
|
|
|
2 |
b |
-1 |
(0,1/2,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,0,0) |
|
|
P 1 1 2/n |
76 |
|
|
|
|
|
|
|
|
|
4 |
g |
1 |
(x,y,z) |
(-x+1/2,-y+1/2,z) |
(-x,-y,-z) |
(x+1/2,y+1/2,-z) |
|
|
2 |
f |
2 |
(1/4,3/4,z) |
(3/4,1/4,-z) |
|
|
|
|
2 |
e |
2 |
(1/4,1/4,z) |
(3/4,3/4,-z) |
|
|
|
|
2 |
d |
-1 |
(0,1/2,0) |
(1/2,0,0) |
|
|
|
|
2 |
c |
-1 |
(0,0,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
b |
-1 |
(0,1/2,1/2) |
(1/2,0,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,1/2,0) |
|
|
P 1 1 2/b |
77 |
|
|
|
|
|
|
|
|
|
4 |
g |
1 |
(x,y,z) |
(-x,-y+1/2,z) |
(-x,-y,-z) |
(x,y+1/2,-z) |
|
|
2 |
f |
2 |
(1/2,3/4,z) |
(1/2,1/4,-z) |
|
|
|
|
2 |
e |
2 |
(0,3/4,z) |
(0,1/4,-z) |
|
|
|
|
2 |
d |
-1 |
(1/2,0,0) |
(1/2,1/2,0) |
|
|
|
|
2 |
c |
-1 |
(0,0,1/2) |
(0,1/2,1/2) |
|
|
|
|
2 |
b |
-1 |
(1/2,0,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(0,1/2,0) |
|
|
P 2/b 1 1 |
78 |
|
|
|
|
|
|
|
|
|
4 |
g |
1 |
(x,y,z) |
(x,-y+1/2,-z) |
(-x,-y,-z) |
(-x,y+1/2,z) |
|
|
2 |
f |
2 |
(x,1/4,1/2) |
(-x,3/4,1/2) |
|
|
|
|
2 |
e |
2 |
(x,1/4,0) |
(-x,3/4,0) |
|
|
|
|
2 |
d |
-1 |
(0,0,1/2) |
(0,1/2,1/2) |
|
|
|
|
2 |
c |
-1 |
(1/2,0,0) |
(1/2,1/2,0) |
|
|
|
|
2 |
b |
-1 |
(1/2,0,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(0,1/2,0) |
|
|
P 2/n 1 1 |
79 |
|
|
|
|
|
|
|
|
|
4 |
g |
1 |
(x,y,z) |
(x,-y+1/2,-z+1/2) |
(-x,-y,-z) |
(-x,y+1/2,z+1/2) |
|
|
2 |
f |
2 |
(x,1/4,3/4) |
(-x,3/4,1/4) |
|
|
|
|
2 |
e |
2 |
(x,1/4,1/4) |
(-x,3/4,3/4) |
|
|
|
|
2 |
d |
-1 |
(0,0,1/2) |
(0,1/2,0) |
|
|
|
|
2 |
c |
-1 |
(1/2,0,0) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
b |
-1 |
(1/2,0,1/2) |
(1/2,1/2,0) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(0,1/2,1/2) |
|
|
P 2/c 1 1 |
80 |
|
|
|
|
|
|
|
|
|
4 |
g |
1 |
(x,y,z) |
(x,-y,-z+1/2) |
(-x,-y,-z) |
(-x,y,z+1/2) |
|
|
2 |
f |
2 |
(x,1/2,3/4) |
(-x,1/2,1/4) |
|
|
|
|
2 |
e |
2 |
(x,0,3/4) |
(-x,0,1/4) |
|
|
|
|
2 |
d |
-1 |
(0,1/2,0) |
(0,1/2,1/2) |
|
|
|
|
2 |
c |
-1 |
(1/2,0,0) |
(1/2,0,1/2) |
|
|
|
|
2 |
b |
-1 |
(1/2,1/2,0) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(0,0,1/2) |
|
|
P 1 2sub1/c 1 |
81 |
|
|
|
|
|
|
|
|
|
4 |
e |
1 |
(x,y,z) |
(-x,y+1/2,-z+1/2) |
(-x,-y,-z) |
(x,-y+1/2,z+1/2) |
|
|
2 |
d |
-1 |
(1/2,0,1/2) |
(1/2,1/2,0) |
|
|
|
|
2 |
c |
-1 |
(0,0,1/2) |
(0,1/2,0) |
|
|
|
|
2 |
b |
-1 |
(1/2,0,0) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(0,1/2,1/2) |
|
|
P 1 2sub1/n 1 |
82 |
|
|
|
|
|
|
|
|
|
4 |
e |
1 |
(x,y,z) |
(-x+1/2,y+1/2,-z+1/2) |
(-x,-y,-z) |
(x+1/2,-y+1/2,z+1/2) |
|
|
2 |
d |
-1 |
(0,0,1/2) |
(1/2,1/2,0) |
|
|
|
|
2 |
c |
-1 |
(1/2,0,1/2) |
(0,1/2,0) |
|
|
|
|
2 |
b |
-1 |
(1/2,0,0) |
(0,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,1/2,1/2) |
|
|
P 1 2sub1/a 1 |
83 |
|
|
|
|
|
|
|
|
|
4 |
e |
1 |
(x,y,z) |
(-x+1/2,y+1/2,-z) |
(-x,-y,-z) |
(x+1/2,-y+1/2,z) |
|
|
2 |
d |
-1 |
(1/2,0,1/2) |
(0,1/2,1/2) |
|
|
|
|
2 |
c |
-1 |
(1/2,0,0) |
(0,1/2,0) |
|
|
|
|
2 |
b |
-1 |
(0,0,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,1/2,0) |
|
|
P 1 1 2sub1/a |
84 |
|
|
|
|
|
|
|
|
|
4 |
e |
1 |
(x,y,z) |
(-x+1/2,-y,z+1/2) |
(-x,-y,-z) |
(x+1/2,y,-z+1/2) |
|
|
2 |
d |
-1 |
(1/2,1/2,0) |
(0,1/2,1/2) |
|
|
|
|
2 |
c |
-1 |
(1/2,0,0) |
(0,0,1/2) |
|
|
|
|
2 |
b |
-1 |
(0,1/2,0) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,0,1/2) |
|
|
P 1 1 2sub1/n |
85 |
|
|
|
|
|
|
|
|
|
4 |
e |
1 |
(x,y,z) |
(-x+1/2,-y+1/2,z+1/2) |
(-x,-y,-z) |
(x+1/2,y+1/2,-z+1/2) |
|
|
2 |
d |
-1 |
(1/2,0,0) |
(0,1/2,1/2) |
|
|
|
|
2 |
c |
-1 |
(1/2,1/2,0) |
(0,0,1/2) |
|
|
|
|
2 |
b |
-1 |
(0,1/2,0) |
(1/2,0,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,1/2,1/2) |
|
|
P 1 1 2sub1/b |
86 |
|
|
|
|
|
|
|
|
|
4 |
e |
1 |
(x,y,z) |
(-x,-y+1/2,z+1/2) |
(-x,-y,-z) |
(x,y+1/2,-z+1/2) |
|
|
2 |
d |
-1 |
(1/2,1/2,0) |
(1/2,0,1/2) |
|
|
|
|
2 |
c |
-1 |
(0,1/2,0) |
(0,0,1/2) |
|
|
|
|
2 |
b |
-1 |
(1/2,0,0) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(0,1/2,1/2) |
|
|
P 2sub1/b 1 1 |
87 |
|
|
|
|
|
|
|
|
|
4 |
e |
1 |
(x,y,z) |
(x+1/2,-y+1/2,-z) |
(-x,-y,-z) |
(-x+1/2,y+1/2,z) |
|
|
2 |
d |
-1 |
(0,1/2,1/2) |
(1/2,0,1/2) |
|
|
|
|
2 |
c |
-1 |
(0,1/2,0) |
(1/2,0,0) |
|
|
|
|
2 |
b |
-1 |
(0,0,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,1/2,0) |
|
|
P 2sub1/n 1 1 |
88 |
|
|
|
|
|
|
|
|
|
4 |
e |
1 |
(x,y,z) |
(x+1/2,-y+1/2,-z+1/2) |
(-x,-y,-z) |
(-x+1/2,y+1/2,z+1/2) |
|
|
2 |
d |
-1 |
(0,1/2,0) |
(1/2,0,1/2) |
|
|
|
|
2 |
c |
-1 |
(0,1/2,1/2) |
(1/2,0,0) |
|
|
|
|
2 |
b |
-1 |
(0,0,1/2) |
(1/2,1/2,0) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,1/2,1/2) |
|
|
P 2sub1/c 1 1 |
89 |
|
|
|
|
|
|
|
|
|
4 |
e |
1 |
(x,y,z) |
(x+1/2,-y,-z+1/2) |
(-x,-y,-z) |
(-x+1/2,y,z+1/2) |
|
|
2 |
d |
-1 |
(0,1/2,1/2) |
(1/2,1/2,0) |
|
|
|
|
2 |
c |
-1 |
(0,0,1/2) |
(1/2,0,0) |
|
|
|
|
2 |
b |
-1 |
(0,1/2,0) |
(1/2,1/2,1/2) |
|
|
|
|
2 |
a |
-1 |
(0,0,0) |
(1/2,0,1/2) |
|
|
C 1 2/c 1 |
90 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x,y,-z+1/2) |
(-x,-y,-z) |
(x,-y,z+1/2) |
|
|
4 |
e |
2 |
(0,y,1/4) |
(0,-y,3/4) |
|
|
|
|
4 |
d |
-1 |
(1/4,1/4,1/2) |
(3/4,1/4,0) |
|
|
|
|
4 |
c |
-1 |
(1/4,1/4,0) |
(3/4,1/4,1/2) |
|
|
|
|
4 |
b |
-1 |
(0,1/2,0) |
(0,1/2,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(0,0,1/2) |
|
|
A 1 2/n 1 |
91 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x+1/2,y,-z+1/2) |
(-x,-y,-z) |
(x+1/2,-y,z+1/2) |
|
|
4 |
e |
2 |
(1/4,y,1/4) |
(3/4,-y,3/4) |
|
|
|
|
4 |
d |
-1 |
(1/2,3/4,3/4) |
(0,3/4,3/4) |
|
|
|
|
4 |
c |
-1 |
(0,3/4,1/4) |
(1/2,3/4,1/4) |
|
|
|
|
4 |
b |
-1 |
(0,1/2,0) |
(1/2,1/2,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(1/2,0,1/2) |
|
|
I 1 2/a 1 |
92 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x+1/2,y,-z) |
(-x,-y,-z) |
(x+1/2,-y,z) |
|
|
4 |
e |
2 |
(1/4,y,0) |
(3/4,-y,0) |
|
|
|
|
4 |
d |
-1 |
(3/4,3/4,1/4) |
(3/4,3/4,3/4) |
|
|
|
|
4 |
c |
-1 |
(1/4,3/4,1/4) |
(1/4,3/4,3/4) |
|
|
|
|
4 |
b |
-1 |
(0,1/2,0) |
(1/2,1/2,0) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(1/2,0,0) |
|
|
A 1 2/a 1 |
93 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x+1/2,y,-z) |
(-x,-y,-z) |
(x+1/2,-y,z) |
|
|
4 |
e |
2 |
(3/4,y,0) |
(1/4,-y,0) |
|
|
|
|
4 |
d |
-1 |
(1/2,1/4,1/4) |
(0,1/4,3/4) |
|
|
|
|
4 |
c |
-1 |
(0,1/4,1/4) |
(1/2,1/4,3/4) |
|
|
|
|
4 |
b |
-1 |
(0,1/2,0) |
(1/2,1/2,0) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(1/2,0,0) |
|
|
C 1 2/n 1 |
94 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x+1/2,y,-z+1/2) |
(-x,-y,-z) |
(x+1/2,-y,z+1/2) |
|
|
4 |
e |
2 |
(1/4,y,1/4) |
(3/4,-y,3/4) |
|
|
|
|
4 |
d |
-1 |
(3/4,1/4,1/2) |
(3/4,1/4,0) |
|
|
|
|
4 |
c |
-1 |
(1/4,1/4,0) |
(1/4,1/4,1/2) |
|
|
|
|
4 |
b |
-1 |
(0,1/2,0) |
(1/2,1/2,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(1/2,0,1/2) |
|
|
I 1 2/c 1 |
95 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x,y,-z+1/2) |
(-x,-y,-z) |
(x,-y,z+1/2) |
|
|
4 |
e |
2 |
(0,y,1/4) |
(0,-y,3/4) |
|
|
|
|
4 |
d |
-1 |
(1/4,1/4,3/4) |
(3/4,1/4,3/4) |
|
|
|
|
4 |
c |
-1 |
(1/4,1/4,1/4) |
(3/4,1/4,1/4) |
|
|
|
|
4 |
b |
-1 |
(0,1/2,0) |
(0,1/2,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(0,0,1/2) |
|
|
A 1 1 2/a |
96 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x+1/2,-y,z) |
(-x,-y,-z) |
(x+1/2,y,-z) |
|
|
4 |
e |
2 |
(1/4,0,z) |
(3/4,0,-z) |
|
|
|
|
4 |
d |
-1 |
(1/2,1/4,1/4) |
(0,3/4,1/4) |
|
|
|
|
4 |
c |
-1 |
(0,1/4,1/4) |
(1/2,3/4,1/4) |
|
|
|
|
4 |
b |
-1 |
(0,0,1/2) |
(1/2,0,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(1/2,0,0) |
|
|
B 1 1 2/n |
97 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x+1/2,-y+1/2,z) |
(-x,-y,-z) |
(x+1/2,y+1/2,-z) |
|
|
4 |
e |
2 |
(1/4,1/4,z) |
(3/4,3/4,-z) |
|
|
|
|
4 |
d |
-1 |
(3/4,1/2,3/4) |
(3/4,0,3/4) |
|
|
|
|
4 |
c |
-1 |
(1/4,0,3/4) |
(1/4,1/2,3/4) |
|
|
|
|
4 |
b |
-1 |
(0,0,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(1/2,1/2,0) |
|
|
I 1 1 2/b |
98 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x,-y+1/2,z) |
(-x,-y,-z) |
(x,y+1/2,-z) |
|
|
4 |
e |
2 |
(0,1/4,z) |
(0,3/4,-z) |
|
|
|
|
4 |
d |
-1 |
(1/4,3/4,3/4) |
(3/4,3/4,3/4) |
|
|
|
|
4 |
c |
-1 |
(1/4,1/4,3/4) |
(3/4,1/4,3/4) |
|
|
|
|
4 |
b |
-1 |
(0,0,1/2) |
(0,1/2,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(0,1/2,0) |
|
|
B 1 1 2/b |
99 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x,-y+1/2,z) |
(-x,-y,-z) |
(x,y+1/2,-z) |
|
|
4 |
e |
2 |
(0,3/4,z) |
(0,1/4,-z) |
|
|
|
|
4 |
d |
-1 |
(1/4,1/2,1/4) |
(3/4,0,1/4) |
|
|
|
|
4 |
c |
-1 |
(1/4,0,1/4) |
(3/4,1/2,1/4) |
|
|
|
|
4 |
b |
-1 |
(0,0,1/2) |
(0,1/2,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(0,1/2,0) |
|
|
A 1 1 2/n |
100 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x+1/2,-y+1/2,z) |
(-x,-y,-z) |
(x+1/2,y+1/2,-z) |
|
|
4 |
e |
2 |
(1/4,1/4,z) |
(3/4,3/4,-z) |
|
|
|
|
4 |
d |
-1 |
(1/2,3/4,1/4) |
(0,3/4,1/4) |
|
|
|
|
4 |
c |
-1 |
(0,1/4,1/4) |
(1/2,1/4,1/4) |
|
|
|
|
4 |
b |
-1 |
(0,0,1/2) |
(1/2,1/2,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(1/2,1/2,0) |
|
|
I 1 1 2/a |
101 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(-x+1/2,-y,z) |
(-x,-y,-z) |
(x+1/2,y,-z) |
|
|
4 |
e |
2 |
(1/4,0,z) |
(3/4,0,-z) |
|
|
|
|
4 |
d |
-1 |
(3/4,1/4,1/4) |
(3/4,3/4,1/4) |
|
|
|
|
4 |
c |
-1 |
(1/4,1/4,1/4) |
(1/4,3/4,1/4) |
|
|
|
|
4 |
b |
-1 |
(0,0,1/2) |
(1/2,0,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(1/2,0,0) |
|
|
B 2/b 1 1 |
102 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(x,-y+1/2,-z) |
(-x,-y,-z) |
(-x,y+1/2,z) |
|
|
4 |
e |
2 |
(x,1/4,0) |
(-x,3/4,0) |
|
|
|
|
4 |
d |
-1 |
(1/4,1/2,1/4) |
(1/4,0,3/4) |
|
|
|
|
4 |
c |
-1 |
(1/4,0,1/4) |
(1/4,1/2,3/4) |
|
|
|
|
4 |
b |
-1 |
(1/2,0,0) |
(1/2,1/2,0) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(0,1/2,0) |
|
|
C 2/n 1 1 |
103 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(x,-y+1/2,-z+1/2) |
(-x,-y,-z) |
(-x,y+1/2,z+1/2) |
|
|
4 |
e |
2 |
(x,1/4,1/4) |
(-x,3/4,3/4) |
|
|
|
|
4 |
d |
-1 |
(3/4,3/4,1/2) |
(3/4,3/4,0) |
|
|
|
|
4 |
c |
-1 |
(3/4,1/4,0) |
(3/4,1/4,1/2) |
|
|
|
|
4 |
b |
-1 |
(1/2,0,0) |
(1/2,1/2,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(0,1/2,1/2) |
|
|
I 2/c 1 1 |
104 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(x,-y,-z+1/2) |
(-x,-y,-z) |
(-x,y,z+1/2) |
|
|
4 |
e |
2 |
(x,0,1/4) |
(-x,0,3/4) |
|
|
|
|
4 |
d |
-1 |
(3/4,1/4,3/4) |
(3/4,3/4,3/4) |
|
|
|
|
4 |
c |
-1 |
(3/4,1/4,1/4) |
(3/4,3/4,1/4) |
|
|
|
|
4 |
b |
-1 |
(1/2,0,0) |
(1/2,0,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(0,0,1/2) |
|
|
C 2/c 1 1 |
105 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(x,-y,-z+1/2) |
(-x,-y,-z) |
(-x,y,z+1/2) |
|
|
4 |
e |
2 |
(x,0,3/4) |
(-x,0,1/4) |
|
|
|
|
4 |
d |
-1 |
(1/4,1/4,1/2) |
(1/4,3/4,0) |
|
|
|
|
4 |
c |
-1 |
(1/4,1/4,0) |
(1/4,3/4,1/2) |
|
|
|
|
4 |
b |
-1 |
(1/2,0,0) |
(1/2,0,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(0,0,1/2) |
|
|
B 2/n 1 1 |
106 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(x,-y+1/2,-z+1/2) |
(-x,-y,-z) |
(-x,y+1/2,z+1/2) |
|
|
4 |
e |
2 |
(x,1/4,1/4) |
(-x,3/4,3/4) |
|
|
|
|
4 |
d |
-1 |
(1/4,1/2,3/4) |
(1/4,0,3/4) |
|
|
|
|
4 |
c |
-1 |
(1/4,0,1/4) |
(1/4,1/2,1/4) |
|
|
|
|
4 |
b |
-1 |
(1/2,0,0) |
(1/2,1/2,1/2) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(0,1/2,1/2) |
|
|
I 2/b 1 1 |
107 |
|
|
|
|
|
|
|
|
|
8 |
f |
1 |
(x,y,z) |
(x,-y+1/2,-z) |
(-x,-y,-z) |
(-x,y+1/2,z) |
|
|
4 |
e |
2 |
(x,1/4,0) |
(-x,3/4,0) |
|
|
|
|
4 |
d |
-1 |
(1/4,3/4,1/4) |
(1/4,3/4,3/4) |
|
|
|
|
4 |
c |
-1 |
(1/4,1/4,1/4) |
(1/4,1/4,3/4) |
|
|
|
|
4 |
b |
-1 |
(1/2,0,0) |
(1/2,1/2,0) |
|
|
|
|
4 |
a |
-1 |
(0,0,0) |
(0,1/2,0) |
|
|